NASA
CR
3560

NASA Contractor Report 3560

h&Teqrn

AN ‘g4VX AHVHEN HO3L

A FORTRAN Program for Calculating’ R
Three-Dimensional, Inviscid,

Rotational Flows With Shock Waves

in Axial Compressor Blade Rows

User’s Manual

Pl CaPy- »0Tipen vy

William T. Thompkins, Jr.

GRANT NSG-3234
JUNE 1982

T Y
; e ek
i ol R EP.
- A e ~
v 3 e e 2
L e . }
e LT ~.
N ¢ NS
NFL Lo et
. LN N i
N
i



S,

TIReEITETE i

i e e

N ASA Contractor Report 3560

TECH LIBRARY KAFB, NM

WRHERY

- 002174

A FORTRAN Program for Calculating

Three-Dimensional, Inviscid,

Rotational Flows With Shock Waves

in Axial Compressor Blade Rows

User’s Manual

William T. Thompkins, Jr.

Massachusetts Institute of Technology
Cambridge, Massachusetts

Prepared for
Lewis Research Center
under Grant NSG-3234

NANASAN

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1982






iii

TABLE OF CONTENTS

SYMBOL TABLE &+t v seessosesacssnsoaseoananonsanascsnseanasascensesnens

SUMMARY tccoectoconssnsesssssoseacsncessssassnssnconsnsssssancsnnsnse

INTRODUCTION .veceses Pessessse sttt eeesesesessessnese s es st et
METHOD OF ANALYSTS tcceecovsesccoasocnssansnasnsansansnsasssassssssnans
Flow Equations .ieeeeeecenses cesons Ceeeetseseenecenasesssssasnnnne

Transformed EQUAtions ..eveececeasoscessosasasssssssasssacnasnnons
Coordinate Transforms for Compressor Blade ROWS «seeessccssesonns

Domain Regularizing Functions ....eeceesesesscansase seessesasaes
Mesh Packing Function ........ seesecscasens Ceessescaacsecaunnns
Numerical Integration Scheme .......scceeees Ceteseccasrstsacsnse .

BOUNDARY CONDITIONS AND SPECIAL TOPICS ...... tesstrererstescsesssens

So0lid Wall Boundary ConditionsS ..ceeecesesscasesensessasscscssonsse
Problem Areas within the Standard Boundary Formulation ...cseeeee

Boundary Conditions in a Staggered Grid System .....cseees. ceseen
Periodic Boundaries ...ceeeccencaccccnans e esessensesnsesacoaanns
Upstream or Inflow Boundary Conditions .....cceeeveccencecccesans
Downstream or OQutflow Boundary Conditions ..cecceeeeececnccccnns .
Kutta Condition ........ cecesens cesesssesesenns teeacenas cereecsnn
Spinners ...cccc.e. cecssseeassavene Ceseecsserencnnesessansannnnes

COMPUTER CODE DESCRIPTION ....... Cecsasecasersess st ra sttt esen e

Grid Generation Program: MESH3D ..... essecsessesssanseranras o
Numerical Integration Program: BLADE3D ....... csessanes cecsnenns
Graphical Output Program: GRAPH3D .si:ceoesocssosscanssssasansans

INPUT DICTIONARY FOR MESH3D .teevcecceeacsonsscsssnsoscsnasncsssanaasns

Main Program INPUt scevessecsososnasoncas cececescsssnsessasannne .o
Subroutine GRID INPUL .eseecesecoarosesssssasesssassaassossansnans
Subroutine CALT INPUL socececrsacscsscsosscsseassscnsssssscssssscsos
Special Notes and Restrictions on Input Variables for MESH3D ....

INPUT DICTIONARY FOR BLADE3D cevececosoccsonsnsoncsasasasscsscssscasns
Special Instructions for BLADE3D INPUL «eceeessccsccsrcsscsnsssas

Data Files Used for MESH3D, BLADE3D and GRAPH3D ...veecacevcncccs

Description of Printed Output for MESH3D ..vvveececsscoocnnssns
Printed Output for BLADE3D .cciteosvnccscssnnns ceessetanrasans
Output Description for GRAPH3D ..viiesrccncssenscnocccacsoanans



iv

EXAMPLE CALCULATION c.cccveooccconcscnssccsasssssssnssasascssnasssnsns

REFERENCES ¢ cteenecesncsseoscosnsonssosonssrsnsssnsssessssacssesnssasnsnss

FIGURES

75

81

83



SYMBOL TABLE

1 UPPER CASE
§
il
g AR’ A Coefficient matrices in L and L
i S] - - 0
: finite difference operators
C1 Placement constant for part-span shroud
C2 Relaxation factor on radial grid lines
D Differential operator
Et Total internal energy
F,G,G*,H Flux vectors in radial, tangential and axial direction
J Jacobian
+ . . .
J Downstream running characteristic value
J Upstream running characteristic value
K Right-hand side of conservation law equations due to
cylindrical coordinates
KX Axial grid stretching factor
L Reference length
LR’LX’LO Finite difference operators in radial, axial and
tangential directions
M Mach number
R Transformed radial direction
Rl Radius of part-span shroud lower surface
R2 Radius of part-span shroud upper surface
R Working fluid gas constant
RS, RT Surface radius of curvatuge
T Temperature
U Solution state vector
UR’UX’UO Contra~variant velocities normal to radial, &axial and

tangential planes



v Velocity vector
V; Meridional velocity vector
X Transformed axial coordinate
Z Finite difference damping operator
LOWER CASE
a Speed of sound
a, Reference velocity
aup Far upstream speed of sound
Cp Specific heat at constant pressure
c, Specific heat at constant volume
e Internal energy
f General fluid property
h Enthalpy
h .h .h CoordinaFe arc length scale factor in meridional,
m’ n’"0 normal directions
Er Unit vector in radial direction
fe Unit vector in tangential direction
j.k,2,n Finite difference grid numbers in axial, tangential,
radial and time direction
m Finite difference operation repeat factor
n Unit normal vector
P Static pressure or finite difference operation time step
factor
r,0,z Cylindrical coordinate system directions
r Tip casing radius

tip



Yr,Ye,Yz
ot

GtR,GtX,GtO

én,dx,dy

W ©

vii

Entropy

Time

General cartesian velocities
Meridional, normal velocity

Radial, tangential, axial velocities

Parallel velocity

GREEK
Ratio of specific heats
Direction cosine of surface normal vectors
Time step increment value

Maximum time step value in transformed radial axial
and tangential directions

Spatial step increment in normal or cartesian directions
Cylindrical coordinate system tangential direction
Transformed 6 coordinate

First transformed axial direction

Artificial damping constant

Fluid density

Reference fluid density

Blade row angular rotation speed



Le

lower

Ps

SSs

tip
te

upper

viii

SUBSCRIPTS

Hub

Leading edge

Damper lower surface
Meridional direction
Reference conditions
Pressure surface
Suction surface
Stagnation condition
Tip radius

Trailing edge

Damper upper surface

Wall value



w
i
!

A FORTRAN PROGRAM FOR CALCULATING
THREE-DIMENSIONAL, INVISCID, ROTATIONAL
FLOWS WITH SHOCK WAVES IN AXIAL
COMPRESSOR BLADE ROWS ~ USER'S MANUAL

by

William T. Thompkins, Jr.
Gas Turbine and Plasma Dynamics Laboratory
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
Cambridge, Massachusetts

SUMMARY

A FORTRAN-IV computer program has been developed for the calcula-—
tion of the inviscid transonic/supersonic flow field in a fully three-dimen-
sional blade passage of an axial compressor rotor or stator. Rotors may have
dampers (part-span shrouds). MacCormack's explicit time-marching method is
used to solve the unsteady Euler equations on a finite difference mesh. This
technique captures shocks and smears them over several grid points. Input
quantities are blade row geometry, operating conditions and thermodynamic
quantities. Output quantities are three velocity components, density and
internal energy at each mesh point. Other flow quantities are calculated
from these variables. A short graphics package is included with the code,
and may be used to display the finite difference grid, blade geometry and
static pressure contour plots on blade-to-blade calculation surfaces or blade
suction and pressure surfaces.

Flows 1n four transonic compressor rotors have been analyzed and

compared with exit flow field measurements and intra-blade static density



measurements obtained with a gas fluorescence technique. These comparisons
have generally shown that the computed flow fields accurately model the
experimentally determined passage shock positions and overall aerodynamic
performance.

The computer code was developed and generally run on a large mini-
computer system, a Digital Equipment Corporation PDP-11/70, with run times of
two to three days. The code has also been run on several main-frame com-
puters (IBM 3033, IBM 360/678, UNIVAC 1110, CDC 7600 and a CRAY-1). Typical

run times on an IBM 3033 have been found to be 5~10 hours.



INTRODUCTION

_ For many analysis problems in turbomachinery, an assumption of
inviscid flow provides sufficiently accurate results for design or develop-
ment tasks. This situation often arises in calculation of design point per-
formances for high speed axial compressor blade rows, even though these flows
may exhibit complex interactions of inviscid and viscous phenomena. An
accurate inviscid calculation is of great benefit for compressor design since
vigscous and shock losses can both be reduced if the inviscid flow can be pre-
dicted. The design point performance of high speed axial compressors could
be greatly improved through the use of an accurate inviscid flow solution,
without requiring a fully viscous flow solution.

Classical analytical solutions for these flows have not developed
either because of the flow character—-mixed subsonic-supersonic flow with
strong shock waves——or because of the intrinsic nonlinear, three-dimensional
features of transonic flows. For such flows pure numerical procedures can
usually provide quick, accurate solutions with reasonable cost. The numeri-
cal procedures and techniques to be described have been specialized for solu-
tions of inviscid flow in high pressure ratio, high tip-speed axial
compressor rotors, even though the techaniques employed are of much wider
generality.

The compressor rotors to be studied are assumed to be isolated
blade rows which are completely enclosed by hub and tip casings. Since the
fluid is assumed to be inviscid and each blade in a row is assumed to be
identical, the flow field about each blade may reasonably be considered to be

identical. This assumption allows the physical domain of interest to be



reduced to that bounded by a pair of blades and the extension of their mean
camber lines upstream and downstream, as 1llustrated in Figure 1. This
region 1s assumed to extend to upstream and downstream infinity, and the flow
is assumed to be periodic blade-to-blade. The blade rows of interest have
several common features: their internal flows have mixed subsonic-
transounic-supersonic relative Mach numbers, a range of 0.5 to as high as 2.0,
and they attempt to use moderately strong shock waves as an efficient method
to transfer energy from the rotating machinery to the fluid flow; their
internal flow passages are complex three—dimensional shapes in which natural
bounding surfaces rarely join orthogonally. These characteristics rather
severely restrict the present choice of numerical solution schemes to time-—
accurate, finite difference solutions of the three-dimensional Euler
Equations (continuity, inviscid momentum and inviscid energy equation with no
heat conduction).

The numerical scheme selected to integrate the equations of motion

1,2 This scheme 1is an explicit, time-accurate, con-

is MacCormack's method.
ditionally stable method of second order accuracy with good shock capturing
properties. Shock waves are resolved as regions of high gradients spread
over about 5 mesh points in the streamwise direction. 1In a complex flow
the existence and location of shock waves need not be anticipated but
develop naturally as the solution proceeds. The penalty paid for this con-
venience 1s a loss 1In spatial resolution of shock waves and some inaccuracy
in shock jump conditions. Although shock-fitting schemes are an area of

current research,3’4 methods suitable for three-dimensional flows are not yet

available,



gr,v

In most situations, the time accurate nature of MacCormack's method
is of little importance since only the steady state solution 1s of interest.
Here the integration method is only a convenient iteration scheme to move
from a rather arbitrary initial condition to the final steady state solutiom.
Commonly used initial couditions are an old steady state solution or a quasi-
meridional start-up procedure provided with the code.

Finite difference methods are useful for complex equation sets such
as the Euler or Navier—Stokes equations, but can be effectively used only in
simple geometric regions. Using finite difference methods for complex
geometries requires adopting coordinate systems or coordinate mappings which
transform the physical domain into a computational domain of simple shape.

In this report, a set of simple analytical stretching functions is used to
map the bounding surfaces into a square computational domain. These trans-
forms accommodate any hub or tip casing shape and almost any blade shape.
Best results are obtained for thin leading and trailing edges as are most
often encountered in compressor blade rows. Further work is continuing on
more general coordinate mappings to provide more accurate solutions for any
blade geometry.

The computer codes described in this report represent a radical
departure in philosophy of large-scale computational projects in the choice
of computer systems. These codes were developed and production runs made on
a dedicated minicomputer, a Digital Equipment Corporation PDP-11/70, rather
than a large main frame computer. These codes have also been run on an IBM
360/67, an IBM 3033, a UNIVAC 1110, a CDC 7600, and a CRAY-1l. It was found

during development that, at least in the author's opinion, the dedicated



minicomputer was a superior code development machine to any main frame com-
puter. The cost of production code running was also lower than on any
available main frame computer, with a total cost of about 300 dollars per

solution.



METHOD OF ANALYSIS

Flow Equations

For flow calculations in turbomachinery blade passages, a cylindri-
cal coordinate system 18 a patural cholce since conslderable cylindrical sym—
metry exists, and was selected as a base coordinate system. This system is a
right-handed one (r, 8, z) which has the positive z coordinate polnting in
the axial flow direction. Blade rows will be assumed to rotate in the posi-
tive 6 direction, clockwise when looking downstream.

A convenient set of three—dimensional iIinviscid flow equations
expressed in cylindrical coordinates is found in MacCormack.l These equations
are In weak conservation law form and may be easily expressed in matrix form

as:

L S (1)
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and the prime superscripts have been dropped for convenience.

These equations are non—dimensionalized using a reference length,
L, a reference velocity, a., and a reference density, Poe The reference
quantities are in principle arbitrary, but the reference velocity and density
have been selected to be the stagnation speed of sound and density on the
inlet tip casing streamline. The reference length remains arbitrary but is
conventionally selected as the inlet tip casing radius. The new non-

dimensional variables (primes indlcate dimensionless quantities) are:

length r' =r/L, z' =z/L (6)
velocity u' = u/a, (7
density p' = o/ 0, (8)
pressure p' = p/poqg (9)
energy e' = e/ai (10)
rotational speed w' = mLfaO (11)

The reference quantities TO and P, are not independent and are

determined from:
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dimensional variables
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The Euler flow equations become
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(14)




11

Transformed Equations

As 1is typical in three-dimensional flow solutions, the geometric
domain in physical space is sufficiently complex to render a direct finite
difference solution in physical space impractical. The approach adopted here
to solve the finite difference grid allocation problem is to introduce a set
of independent variable transformations or coordinate stretchings which map a

single compressor blade passage into a rectangular parallelepiped. A general-

(r, 8, z) + (R, 0, X) (15

with

R = R(r, 6, 2), © = o(r, 0, z), and X = X(r, 0, z) .
Introducing a coordinate transform modifies the original partial
differential equations. Using the chain rule for derivatives Equation (14)

becomes

(16)

This equation may be rearranged as:
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oU oF 3R 9G 3R oH 3R oF 90 oG 90 oH 90
3t |3Rar TR38 TR3z| T |5o5r T30 38 T 30 3z
(17)
oF oX G 93X oH 98X
* Isxar taxse T axaz| - K

Equation (14) is in weak conservation law form, while equation (17) is in
non—-conservation law form after the coordinate transforms have been intro-

duced. The weak conservation law form may be retained, reference 5 and 6,

as:

=+t t+ir+t ==K (18)

where

= = 9R , G 3R 9R
UsU/J’Fs[F-a_I-'-;ﬁ-,-H—a_-Z-]/’ (19)
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G [F-é-i_-'i';-g"'ﬂ-a—z- J (20)
_ oX G 9R X
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K = K/J (22)

J 1is the transform Jacobian.
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(23)

These equations may be rewritten in the following form in which the

contravariant velocity components appear directly.

= 1
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(25)
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where
r u
_ 3R 6 oR 3R

Up = u, 3?}*? 38 T Y [E] (27)
ax]  Ye ox X

Ug = o 3?] L TR [?z‘} (28)

o o—w 20], e w0 a0 o Tae (29

fe) T r 36 Yz |9z

As described in reference 6, U U_ and UX are the contravariant

R’ 0
velocities perpendicular to the R, O and X coordinate surfaces. If these

coordinate surfaces are chosen to coincide with physical boundaries in the

problem, the no flow through solid surface boundary condition becomes:

UR = 0 on constant R surfaces (30)
UO = 0 on constant O surfaces (31)
UX = 0 on constant X surfaces (32)

Full conservation law forms (CLF) are generally to be preferred
over non-conservation law forms (NCLF) on a theoretical basis. CLF contain
the correct shock jump conditions while NCLF may not. The CLF, when used
with appropriate spatial differencing, should have superior mass, energy and
momentum conservation properties. When a CLF finite difference solution is
summed over a large volume of several mesh cells, the inter—cell flux of
energy mass, and momentum cancel, thus satisfying the integral coaservation
law properties for the large volume. For flow regions without shock waves,
CLF solutions and NCLF solutions approach each other as the grid spacing
decreases, but incorrect shock jump conditions may be predicted by NCLF solu-

tions even in the limit of infinite grid resolution.
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For simple flow problems where shock waves may be aligned with cell
boundaries, the theoratical advantages of the CLF are easily demonstrated.
For practical flow problems where shock waves may cross cell boundaries, the
CLF advantages are more difficult to demonstrate. In fact, NCLF solutions
often appear to glve superior results. For this reason, the computer code
described in this report has the capability to use either the NCLF of

equation (17) or the weak congervation law form of equation (18).
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Coordinate Transforms for Compressor Blade Rows

As was previously discussed, the analysis will be limited to calcu-
lations for the flow through a single blade passage. The physical flow
domain 1s illustrated in Figure 1 and consists of the space bounded by a pair
of blades and the extension of their mean camber lines upstream and
downstream of the blade row. The extension region is assumed to extend to
upstream and downstream infinity, and the flow is assumed to be periodic,
blade-to—blade, in this region. This physical domain is mapped onto a com-
putational domain which is a rectangular parallelopiped. The computational
domain is usually truncated 3 to 5 chords upstream and downstream of the
blade row.

Domain Regularizing Functions

Two mapping functions were chosen: first, one which regularizes the
physical domain; and second, one which locally increases mesh density near

the blade leading and tralling edges. The domain regularizing functions are

given by:
R = r- rhub(z)
Teip(8) = T (2) (33)
6 - st(r,z)
0= (34)
) Gss(r,z) - eps(r,z)
an

N . NS
&= zte(r) - zle(r) - 0.5 (35)
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Here r is the radial position of the hub casing

hub
rtip is the radial position of the tip casing

eps 1s the theta position of the blade pressure surface
ess 1s the theta position of the blade suction surface

Zpe is the plan view projection of the blade row leading edge

Z o is the plan view projection of the blade row trailing edge

A plan view for a typical compressor blade row in both physical
space and computational space is shown in Figure 2. The hub and tip casings
and the blade leading and trailing edge lines are mapped to straight lines.
These mappings are adequate for nearly any compressor flow path,

Similar views of the physical and computational space for blade to
blade sections are shown in Figure 3. Here the curved blade shapes are
mapped to untwisted planes. This mapping appears adequate for thin
compressor blades but may not be adequate for thick blades with blunt
trailing edges, as might be encountered in turbine blade rows.

The effect of an axisymmetric part-span vibration damper or shroud
can be included by modifying only the coordinate stretching in the r
direction, Equation (33). A plan view of a typical flow path which includes
a part-span shroud is shown in Figure 4. This geometry can be treated by
defining two mapplng functions; one function for the physical space below the

damper (r < r ), and a second function for the physical space above the

lower

> L ]
damper (r rupper)
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r-r
R = 1 r 1_1‘1: for T 27 ower (3%
lower hub
_ 1o ~ “upper S
R, = (1 Cl) — +C forr 2T per
tip upper
-
Here, rupper is a function of (r,z) specifying geometry of upper

surface of damper, r is a function of (r,z) specifying geometry of lower

lower

surface of damper, and C1 is a constant determining placement of damper in
computational space. The best value of.C1 is dependent on boundary con-
dition formulations and will be discussed in a later section. This transform
maps the damper into a slit in R-f computational space as shown in Figure 5.
If the blade leading and tralling edges are not comnstant z lines
then near the upstream and downstream edges of the computational domain, the
grid lines produced by these mappings are skewed with respect to either the
local streamlines or a constant z line. This skewness may be eliminated by
using the following transform, applied outside the blade row only, which

allows a constant { line to approach a constant z line as z > 4=,

2
(2-2 ) + [z -2 :l e
Le Le e
0 0 - 0.5 (38)

_(zteo- zReo) + [(zte- zteo) + (zleo— %e) Je
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where zleg and zteo are the axial locations of the blade leading and trailing
edge at the hub radius

C2 is a relaxation factor typically equal to 3.0

zk = z - Z, o Upstream of the blade row, and

zk = Z,, " 2 downstream of the blade row.

Mesh Packing Function

A grid distributed uniformly in the (R,0,%) space may be com—
putationally inefficient since a fine mesh is often desired near the blade
leading and trailing edges and a coarse mesh is desired near the upstream and

downstream boundaries. A mesh packing function which satisfies both of the

requirements is:

£ = A sinh (K X) + B tan'l[sinh (K. X) ] (39)
X X X X
where
A = A*/ Z[A * cinh (K ) + B * tan © [sinh (K )]]
p.4 X X X X X
* —
Ax = sech (KX)/ZKx
B* = sinh (KR ) tanh (K_)/2K
X X X X
— * * . * -1 .
B =By Z{Ax sinh (K ) + B} tan (sinh (Kx))}

and K& i8 a free parameter which controls the mesh packing. Details on this

transform are given by Mérrington7.
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This transformation from (R,0,§) space to (R,0,X) symmetrically
packs points near the leading and trailing edges and stretches the domain
away from the blade row. A typical grid structure having uniform distribu-
tion in the (R,0,X) space is shown in the physical space in Figure 6 (plan
view) and Figure 7 (blade-to-blade view). As shown in these two figures, the
grid system adopted is an offset one in which boundaries are located midway
between grid lines. This arrangement has certain advantages in implementing
both hard wall and periodic boundary conditions. These advantages will be
discussed in a later section. These two figures also show that the blade-to-
blade grid planes, R-§{ or R-X planes, are not curved in the theta direction
which means that the blade-to—-blade lines are not normal to blade surfaces.
In addition, 3R/36 and 9X/36 are zero as may be seen from Equations (33) and
(35).

Numerical Integration Scheme

Equation (17) or (18) is solved using MacCormack's2 split operator
finite difference scheme. This is a two step, explicit, second order
accurate, conditionally stable scheme. The difference equations for the non-

conservation law forms are:

R~direction
£ g e IR
U,0,8 7 Uyk,0 TR (F?,k,m Fj,k,z] 3t
n n 9R n
* (B0~ By ee) ) T O AR ke (40)

SR

+1 _ 1 % L - F* o=

Un = E’ Ul-l,k’lql + Uj ,k’l SR [Fj ’k_’,Q, J,k,Q/—l or

j.k,2 L

J
9R * n
* - g* 22 4 8t A K, + 7, (41)
* {HJ ’kgl HJ ’k,,Q,—l]“ BZ R J’k’g' J’k’g'
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©-direction

™ = o? St [[Fn n ] o0

i,k 50 |\ Fy,k41,2 T FiLk,0) 3r
n n 20 n n 20
* [Gj,k+l,2 Gj,k,z]ae * [Hj,k+1,2, Hj,k,!l,} Bz] (42)
Il
+ &t AG Kj,k,l
n+l _ 1 [ % n _ St * _ ok a9
U T2 Uj,k,2+Uj,k,2, 6@[[Fj,k,2 Fj,k-—l,JL] dr +
L | P 99 * e 9e
[Gj,k,z Gj,k—l,ﬂ,] 3% T [Hj,k,z Hj,k-l,z] Nz (43)
* n
+ St AO Kj,k,z + Zj’k’z
X-direction
x _ .n Ot n _Gh 9X _ 0 X
U= - [_[F'+1,k,2 Fj,k,ﬂ,] ar T [H?+l,k,2, Hj,k,ﬂ,] Bz:[ (44)
ntl _ 1 },n x _ St * _pk X * * X
v 21 U - % [[Fj,k,z Fj-l,k,e]ar (j,k,z Hj—l,k,ﬁl)azjl

(45)

where j, k, and £ respectively identify the axial, circumferential and radial

coordinate of a grid point, n indicates the time step, and * indicates an

intermediate time step. Also
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F* = F(UY) (46)
B* = n(u®) (47)
K* = r(U%) (48)
A= [0 100 0] (49)
Ag=1[00100] (50)

Equations (40, 42 and 44) are the predictor steps, and equations
(41, 43 and 45) are the corrector steps. The forward and backward space dif-
ferences appearing in the predictor and corrector steps are permuted each
operator execution as suggested by MacCormack.2 Similar operators are used
for the conservation law forms.

For this type of time splitting, the three MacCormack operators
must be combined in symmetric sequences in order to maintain second order
accuracy.2’8 Denoting equations (41 and 42) as the LR(St) operator,
equations (43 and 44) as the Le(Gt) operator and equations (45 and 46) as the

LX(Gt) operator, a sequence may be written as:

™2 [Ly (88) Lo(8t) L (26) Ly(St) L (6t)] U (51)

This simple but non-unique sequence advances the solution from time level nét
to time level (n+2)$t.

In order to stabilize the solution along steep gradients of the
flow quantities, such as across shock waves and near the leading and trailing

edges, artificial viscosity terms were introduced, that add to the numerical
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damping of the scheme. The Lapidus9 form of these terms was used and for

LR operator they are:

n n n
Z, =K <{}ju - u U? - U?
3okt T1,k,2 rj,k,z-l{ 3ok, 2 J’k’g]
A
n n Il i
- - U - "
urj,k,2+1 urj,k,ﬁ?. [j,k,ﬂ, j,k,l—lJ (52)

where k is a parameter of order 1 that controls the strength of the artifi-
cial viscosity terms. Low values of k produce sharp shocks, but result in
unacceptable oscillations downstream of the shock. High values of x yield
smooth solutions, but also very wide shocks and strong distortions to the
inviscid field. A typical value of k is 0.4.

Each one-dimensional operator 1is explicit and in the absence of

artificial damping (an =0) have the stability conditions:
’

k,%

for LX
3K 3X X 3X|
s o i (3 on, () |8 -
for L
R 3R 3R 3R 9R]
s on/ Ao 3+ (3] (20 - 2] o
for LO .
=& 0 30 o a0 -
6':@ § 0 [Mr ( - ] + M@ (?é—' + MZ (—B‘Z—'J (55)
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For calculations with strong shocks, these maximum time steps must be reduced
by up to 40 per cent to maintain stability.

For a given calculation 6t GtR and Gte may differ by over an order

X’
of magnitude, and the optimum value of &t is selected using the principle
that the §t used with each operator be as close as possible to its maximum
allowed value while maintaining a symmetric sequence. Typical values for
transonic compressor blade rows are:

Sty = 10 Sty = 20 Sty (56)

A suitable, symmetric sequence 1in this case would be

Ui Terg = [y (6000 (1528627 1 (20 66) (L o (28637 (1, (5000 ] U7

isk,4 G7)

where the notation (Le(pﬁt))m means m successive applications of the

LG operator with a time step of p times 6t.
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BOUNDARY CONDITIONS AND SPECIAL TOPICS

The computational domain illustrated in Figure 8 is bounded by open
surfaces (flow may cross surfaces), solid walls and inflow—outflow
boundaries. Formulations and implementation of boundary conditioms at each
surface and Kutta condition are discussed in this section.

Solid Wall Boundary Conditions

The solid wall boundary condition appropriate for inviscid flow
computations is that of zero mass flux through the surface. This condition
ig8 difficult to impose with uniform numerical accuracy in Euler equation
simulations because of difficulties in evaluating derivatives of fluid pro-
perties and velocities at the wall. In potential flow calculations this dif-
ficulty does not appear since this boundary condition réduces simply to
derivative of potential in direction normal to wall, being identically zero.

A concise 1llustration of the problem is given by considering the
integration of the continuity equation in two dimensions, as illustrated in

Figure 9. The continuity equation is:

90 , 9 2 -
3¢+ 5 (P0) + 5o (ov) = 0 (58)

or since v = 0 at wall

9P + 9. (pu)

at ox =0 (59)
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If the continuity equation is to be numerically integrated using

an explicit technique, the term 3% (pu)

term p[EX]
9y
0

Using Taylor series:

provides no difficulties but the
0
is difficult to evaluate with more than first order accuracy.

3 3 5y° 3
v v '
Vit " Vio ¥ (’a}'”o 8y + L2 5+ €y (60)
y
0
2
1 L A 5 S ] B Ssy?) (61)
dy 0 Sy 6y2 2

No information about the second derivative of v is available to
enable evaluation to second order accuracy.

It is important to remember that this difficulty occurs for both
the conservation and non-conservation law forms of the continuity and energy
equations. In more complex flow geometries, where some type of body fitted
coordinate system like that introduced in the previous section is used, this
problem is not solved, only disguised.

Several numerical flow solutions have been published using this
reflection formulation with apparent good results (see references 10 and 11).
In addition Kreiss12 has demonstrated that for linear hyperbolic equations it
is sufficient for global nth order accuracy to maintain n--lth order accuracy
at the boundaries. The relevance of this statement for the Euler equations
which are hyperbolic but nonlinear has not been established, but published

solutions indicate that it may be at least a good guide for boundary con-—

ditions formulationm.
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For simple flows or two-dimensional supersoanic flows, the method

13

of characteristics may be used to compute flow solutions. Abbett has

published a comparison of several boundary condition approximations coupled
with second order accurate solution schemes, MacCormack's method in
particular, with method of characteristic solutions. Abbett found that

indeed the simple first order accurate scheme for [%%} usually provided
0

. v .
more accurate answers than more complicated schemes to calculate [——J with

oy

second order accuracy. Another important result was that second order

0

accurate approximations using one-sided difference expressions often gave
very poor results.

It is important to recognize that these probleﬁs with specifying
the solid wall boundary conditions exist only for integratiang the fluid
equations on the solid boundary. To integrate the fluid equations for in-
terior points only the pressure on the solid boundary must be known. Solid
boundaries, hub and tip casings or blade surfaces are mapped to coiuncide
with coordinate surfaces which wmeans that the contravariant velocity com~
poaents U_, UO’ Ux (equations 30, 31, and 32) will be identically zero on
these surfaces. MacCormack's method or any scheme using centered spatial
differencing will require either F or G, equation 24 or 26, on the boundary
but not both., If UR = O,'f is determined only by the wall pressure and known
coordinate derivatives. If UO = 0, G is also determined by the wall pressure
and known coordinate derivatives.

Fortunately the wall pressure can be calculated using the momentum

equation in the direction normal to the solid surface. Following reference

10, the normal momentum equation may be expressed as:
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N

3,»k50

where n is the surface normal, % is the blade row rotation speed, u and

u
T

are streamwise velocity components in the orthogonal boundary layer like

coordinate shown in Figure 10, RS and RT are surface radii of curvature in

this coordinate system, and (ir, ir) are unit vectors of the base (r,6,z)

coordinate system.

To be consistent with MacCormack's second order accurate scheme,

(aP/Bn)j should be evaluated with second order accuracy. This can be

done even though (p)j,k,O’ (us)j,k,O and (ur)j,k,O

’k’o
are unknown, by using:

(p)j,k,o = (D)j ,k,l + [%] k.1 Sn +@’(6n)2 (63)
J»Xs
du 9
(u) = (u_) + == dn + &(6n) (64)
® 3,k,0 3.k, )3 k,1
BuT )
(u;) o = (u) . + | = . Sn + T(én ) (65)
j’ bd j’k, j k,

2
The term (puS /RS) can be approximated by

(62)

3

1 ( Ju
op 2 2 s 2

(p), + [——} én + &(én”) ’(u ). +2u dn + &(6n")

t J’k!l an j,k,]— L s J!k:l S an j,lijl
RS
( 3
du

1
=5 {(u)) + [(usz )[%%](SnJ + Z(Dus —5n—]6n + @(n?)

8 j’k,l j’k’l j’k,l
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and so be evaluated with accuracy éy(dnz) if (ap/an)j d

,k,l an

(Bus/an)j are evaluated with accuracy &(8n). These derivatives can be

k5,1
evaluated with this accuracy by a number of schemes; simple extrapolation, or
the first step of MacCormack's method are two examples. The remaining two

2 P -
terms p(uT/Rt) and Q(lzxvrel) may be expressed similarly.

An important aside at this point 1is that there is some theoretical
basis, Kreiss reference 12, for the assumption that (3P/3n) need be evaluated
with only accuracy @(6én). This evaluation, using (66) as a guide, requires

only that we use (p)j,k,O = (p) (us) = (us) and (uT) =

j»k,1, j,k,0 3,k,1 3,k,0

(ur)j,k,l.

A comparative study conducted with reference 14 has shown this par-
ticular scheme, with first order accurate (3P/9n) evaluation, to be the best
available scheme for mixed supersonic and subsonic flows. For purely super-
sonic two-dimensional flows, the method of characteristic type boundary for-
mulations proved best. For purely subsonic irrotatiomal flows, all schemes
tested were adequate. The scheme proposed here performed well in both flow
regimes, and for these two—dimensional flow tests almost never required arti-
ficial damping for stability.

While (3P/3n) is easily calculated numerically, the determination
of the wall pressure requires that this pressure gradient be expressed in the

stretched coordinate system (R,0,X). The normal pressure gradient is

simply the dot product of gradient P and the unit normal vector.

oP| _ -
[5-5] - WP - & 67)
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The components of m, in physical space, are [Yr, Yg» Yz]. For
simplicity the pressure calculation on the hub or tip casing will be

discussed, which means that YOEO. The expanded form of equation (67) is

B 5] [on o] -

o2 _ . |[ep)or | 3P 3x 9P\3R | (3P) 3%
on Yr([BR)Br + 90X 9dr * Y, {BR)BZ * [BX) 9z (69)

or

Finally the pressure gradient may be expressed as:
22) _ |[, 2R 3R) | 2p % ax | 2p
Eﬁﬂ - [{Yr Br] * (Yz BZ) 3R {Yr Br} +[YZ BZ] oX (70)

This expression for (3P/3n) may be considered as defining the components of n

in the computational space.
= [y &, 2R oK, . 3K
Qcomp l:[Yr or +YZ BZ] > 0, [Yr or + Yy az]:l (71)

Equation (70) expresses the pressure gradient along one grid line,
(3P/3R), in terms of the normal pressure gradient, (3P/9n), and the pressure
gradient along a second grid line, (3P/39X). The pressure gradient (3P/3R)

may be used to find the wall pressure.
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Using the notation of Figure 9, the wall pressure, P may be found as:

j,k’o’
9P , oP| . g
P, =P, - = S8R f {——J is known to &(6n) (72
i>k,0 T3kl (3R]j,k,o * (on )
or
P =1l - P -3 [E SR if {ﬁ] is  (73)
i,k,0 37 ikl isk,2 3R): .0 on

known to Cy(énz). Similar relations for the blade surface pressure may be
derived.
Problem Areas within the Standard Boundary Formulation

The standard boundary formulation of equations (62), (70) and (72)
or (73) while complete suffers from several practical problems which have
limited its full application. The difficulties are that all boundary points
are now "linked” and must be solved for simultaneously, that pressure is 111-
defined at corner points, and that surface radii of curvature, RS and RT, are
difficult to calculate accurately.

The appearance of (BP/BX)j’k’O in equation (70) is responsible for
linking the boundary points together since it must also be approximated by a

finite difference expression:

9P = - 20X (74)
(BX]_'] k,0 l'Pj"'lsksO Pj-—]_,k,()

for example. This linking problem is quite vexing for a purely explicit cal-
culation and has been dealt with by the expedient of lagging the calculation

one time step so that (3P/3X) at time level n is approximated by

i,k,0

(aP/ax)j at time level (n-1). This approximation 1s quite good for the

»k,0
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steady state or quasi-steady state problems generally encountered, and has
also been used with good results in references 10 and 15.

Corner points in a three-dimensional calculation present a dif-
ficult problem in these calculations since multiple definition of pressure at
these points can occur. The standard formulation provides little guidance on
the proper choice since the bounding surfaces are not orthogonal. The impor-
tance of proper definitions is illustrated by the disparity in reported solu-
tions for external flow corner problems in references 16 and 17. The corner
polint problem has, in spite of its importance, been superceded by the problem
of accurate calculation of surface radii of curvature R.S and RT. An
illustration of this problem is shown in Figure 11, which shows a typical
supersonic blade section and the surface radius of curvature calculated from
manufacturing coordinates using both spline fit procedures and finite dif-
ference procedures. Curvatures are seen to be quite irregular and even
discontinuous at x/C = 0.7. These specific problem areas plus general dif-
ficulty in calculating second derivatives from manufacturing coordinates
implies that the surface radii of curvature are known to first order accuracy
at best.

Since the curvatures are known, with present coordinate
specifications, to only first order, the first order accurate equations for
(3P/3n) and wall pressure are sufficlent. The radii of curvature variations
do of course cause oscillations in the wall pressure, but more importantly

oscillations in (3P/3X)j which is an important term in equation (70). In

»k,0
blade tip sections these errors usually produce unacceptable variations in

wall pressure and in extreme cases instability. When accurate curvatures are

available (for example in the calculations presented in references 10 and 18,
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these problems do not exist; but in order to proceed with calculations for
less accurately known blade shapes, some further agssumption is needed.

The best practical assumption appears to be evaluating (3P/3X) at
location 2 = 1 and not 2 = 0. This assumption, coupled with first order
accurate evaluation of (3P/3n), is equivalent to evaluating (3P/3n) on grid
line 2 = 1 with the assumption that the streamline radii of curvature are
equal to R.s and Rr'

Boundary Conditions in a Staggered Grid System

The flux preserving boundary formulations discussed above have been
used with the weak conservation law form, equations (18), but a more natural
grid system for the non-conservation law forms, equations (17) was suggested
by Roache.11 This system retains most of the advantages of the flux pre-
serving boundary conditions while making the 1mposition of periodic boundary
conditions of the blade row and the Kutta condition much easier. This mesh
system and the equations (17) are included in the associated computer codes
as well as the weak conservation law forms and consistently give good
results. This mesh system 1llustrated in Figure 12 has no grid lines on the
solid boundary, but maintains the solid boundary midway between an interior
grid line and a dummy grid line. Meaningful fluid quantities are calculated
only for points interior to the flow and the exterior points are defined only
to implement the flux preserving boundary conditions. Wall quantities are

defined as having average values of

1 ’
= = + 7
fi,w 2 lfi,l fi,2 (75

For the two dimensional example illustrated in Figure 12, dummy values of
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density, velocities and energy are found from reflection:

P, = p, u, = qu, e, = e, v, = —Vi’1 (76)

The pressure is found as in the first mesh systems from equation (70).
Following Roache,ll these relations may be seen to be nearly equivalent to
the flux preserving conditions.

First, v, T %-(v. 2 + v, .) =0 as desired. Then wall mass flow

i, i,1

3
Pe 4V, + P, ,V
_ i,17i,1 i2 71,2
(QV}W = 2 5 x 11} = pi,lvw = 0 as desired. an
Next wall momentum flux
2, _ 1 2 2 | . 2 (78)
(v, =2 E)i,lvi,l + pi,Zvi,Z:l = P31V4,1 70

Thus this formulation does not directly conserve normal momentum flux. As
Roachell points out, this flux term is still consistent with the original
equation in the limit of (8§x,8y) + 0. Evaluating the momentum flux term as

would occur in any centered explicit scheme yields:

5, 2 1 "( 2 2 1 2 2
— == |(pv") .1 = (pv) 1| === |(pv)_ .1~ (pov)
oy pv ) Wil Sy | wHly v Wt Sy Wl wtl
- L 2 - Sy vl L Ssy)?
o> (pv )W_H% Psl [vw + 5y W+ (éy)j’
2 1 2
(pv ) wil= )
-2 avil Sy 2 79
= Sy = Put (ayJ 2 S8y )} (79)
w
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2
PV 1

as (8y) » 0, 3%-(pv2)i 1+-——§;—JE as desired, so that system is consistent.
]

Periodic Boundaries

One advantage of the staggered grid system is the logical simplifi-
cation it brings to periodic boundaries as well as to leading and trailing
edge conditions. This grid system is illustrated in Figure 13 for the blade-
to-blade plane. Since no grid points are on the blade boundary, there are
no stagnation streamline like grid lines which divide and go around a blade.
Since the X and R grid stretchings are independent of 8, the blade~to-blade
running grid lines remain at comstant (r,z) positions. The periodicity con-
ditions are implemented simply by using the fact that the conditions at k=1
are those of k=NTH-1 and conditions at k=NTH are those of k=2 as shown in
Figure 13.

For the nonstaggered grid illustrated in Figure 9, periodicity may

be maintained by:

a* _ ﬁn ot an 61’1

j,NTH,%  j,NTH,2 80 | j,NTH,R j,NTH- 1,2

A% ~n St |an An

U, = U, - == |G, - G,

i,1,2 3,1, 80 |73,1,8 J,NTH—I,Q} 80)

and
( ® . «

An+l _ % | AT AN _ 6t AR _ AR )
Uj,NTH,Q,— 0.5 [Uj,NTH,SL + Uj,NTH,l 50 [Gj,N 2,9 Gj,NTH,;L (81)

3
An+l - % + _ St (a -8 3
01,0 =05 051,07 U510, 73 EERIRB! sLJJ
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If U?,1,z = U?,NTH,Q’ the periodicity condition, then U?Ti’ g = U?T;Tﬂ,l'
Upstream or Inflow Boundary Conditions

Work described in this report has concentrated on isolated tran-
sonic compressor rotors for which it is difficult to establish proper inflow
upstream boundary conditions. It is well known that the bow shock system of
such rotors produces an upstream disturbance that, while small, propagates
far upstream as an acoustic disturbance. Two different studies have con-
centrated on this problem, reference 19 for small disturbance theories and
reference 20 for full Euler equation simulations. These studies adopted a
common model, that of an isolated rotor operating in an infinite duct. The
flow upstream is assumed to obey linear potential equations with the near
field and the far-field potentials matched on a surface several chords
upstream of the rotor. The upstream potential is expressed as the sum of
three components: a uniform axial flow, a two dimensional axisymmetric per-
turbation and a three dimensional perturbation.

¢ =29

up uniform + q)axi(r-’z) + ¢3D(r,9,z) (82)

Extensive simulations for one rotor geometry in reference 19 using non-
reflecting boundary conditions showed that if the matching plane was located
three or more axial chords upstream then setting ¢3D(r,B,Z)EO was an
adequate approximation for the near—-field solution. These same simulations

also demonstrated that the axisymmetric disturbance remained important even
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three chords upstream. Nearly the same conclusions were reached in reference
20 for two different configurations.

These potential flow results suggest that if computational domains
extend at least 4 to 5 chords upstream of an isolated rotor then it is not
necessary to model either the three-dimensional or axisymmetric disturbances.
Computational domains of this extent greatly increase computation times and
domains extending no more than 2 to 3 chords upstream are desired for reason-
able computation times. Computational domains of this extent require that
the axisymmetric disturbances be modeled with reasonable accuracy.

A simple upstream flow model which can be used to simulate either
potential or axisymmetric rotational upstream flows was proposed in reference
10. This model represents the upstream flow as an unsteady axisymmetric base
flow plus a more general but small disturbance. For the boundary conditiomns
adopted for this report, the small disturbance will be neglected; in the
potential flow case this is equivalent to neglecting ¢3D(r,e,2). The
unsteady base flow is assumed to evolve from a steady axisymmetric
“far-upstream” base flow, which 1s partially specified and partially computed
from the interior solution. These boundary conditions are derived by repre-

senting the velocity as:

<l
]

V(t,r,z) (83)

the pressure as:

la~]
|

= P(t,r,z) (84)
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and the density as:

p = p(t,r,z) (85)

Note that this definition will include both ¢u and ¢axi from reference

niform
19 in the base flow V; and Po.
The equations describing the base flow are continuity and the three

momentum equations and continuity:

oW o__¥e (86)
Dt p

and
D0, (ofy = (87)
22+ (1) = 0

The base flow is also assumed to be isentropic.
Using as a coordinate system the modified cylindrical coordinate
system shown below, the equation of motion may be written in terms of the

tangential velocity and the meridional velocity,

»~
in 4
N ~ n|m
Y
i
9

The equations of motion written in a general orthogonal curvilinear coordinate

system are

= 0
p+ 1 3 (hhpu)+3d (b hepu)+_3_(hnhmpue)]
Y: ‘nth)nmen R T
mn B0
3
aun + U aun + 4 aun + Y8 8un + YnYnm 8hn + unue hn (88)

n m _n+ _9 :
at h_ on h_om he 96 .hnhm om nnhe a8



39
2 2
_ Um ahm - U.e ahe = - l QB
hnhm on hnhe on phn on
gjg +%n 9Up 4 Yy g 4 ug dug , ugu Bhg | ugu dhy
t
hn n hm m he o6 hehm om hehn on
2 2
_um ahm_un ahn=-l§p_
hmhe 28 hnhe 26 phe o6
BUm + i‘. 3“m+f‘_@ Bum + Yy aum + Ul ahm + Ynlg ahm
t
) hn on hm om he o6 hm hn8n hmhe 96
2
3h 2
_ u 3] _ Yn ahn 1 op
hmhe om hnhe om ph_ om

2

Since u = 0, by definition and 56 = 0 by assumption, these

equations reduce for the base flow to,

2
My, Pa % Mo 13
ot h_ 9m h h, 9m Ph dm
m m © m
a(pu_ ) 9(h h
o, 1w, —E oo’ ]=0
3t  h om m" h h h om
m nm 0
Bue N u_m Bue . ugu 3he o
t h oJm h h, om
m m 6
2 2
_ u ma _ ug Bhe _ 1 3p
hh o,m h h, on ph  on
m n n © n

The first two equations may be rewritten in characteristic

form using the isentropic relation,dp = a%dp , as

2
ﬂ.*.i‘l.a_uﬂ_,._l___al’__ Ue (.Z_).h_B)
ot h om ph dm h h om
and n o 3 m 3
19, "m 3, a Mn__ n 2Mehy)
pa 3t pah 9m h om hhh om
m m n m ©

Adding and subtracting these equations yields

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)
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du du u2  dh
m, 13,1 o 1 3p,_ Y M
[ ot ~ pa 9t ]+ hm [(um * a) om + (um * a) pa om 1= hmhe om
_ au B(hehn) 97)
+ hhh om
nm 0
or
2
pfyt - ug g _ au 3 (hgh ) (98)
Dt h_hy om h_hoh Om n
where m m o
J+ = u + 2 a
y-1
and
2.3,
Dt 9t h_ Om
m
- - u? dh au
Dt hh_om hhh om °0
°] 6 n
where
J = u - 2 a
vy-1
and
DD_3 _‘m3
Dt ot h 3m
The third equation, (93), is already in characteristic form.
Du u,u Jh
B = - "Bm ) (100)
Dt h,h Jn

A fourth characteristic also exists and has been chosen to be
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Ds _, (101)

which implies that an isentropic flow exists along each streamline from the
"far-upstream” condition to the computational domain inflow boundary.

At each point on the inflow boundary four pieces of information
must be supplied in order to calculate the flow variables. For transonic
compressor rotors, the upstream meridional Mach number 1is always less than
one, and the J  characteristic is an upstream running characteristic. The
J+ characteristic 1s always a downstream running characteristic. The charac-—
teristics associated with equations (100) and (101) are simply the convection
path. Thus three pleces of information may be specified independently at the
inflow boundary.

This situation is 1llustrated for a single spatial dimension in
Figure 14. For this formulation the solution does not exist for x < 0 and is
assumed to be known at time level ndt. At the node point (nt+l, 1) three

characteristics are incident: a convection characteristic, an upstream

running Ji

+
characteristic, and a downstream running Jr characteristic. The

value of the J; characteristic is known, but the information carried along

the remaining characteristics must be specified.

+ o+l o+l 2 n+l
@ )y o= [um]l tyT e (102)

37,y = [un+l]1 -2, [u-“]z S (103)

n
vy-1 %1 y-1 %2

(um)n+l or a?+1 may be specified in order
1

4+
to determine the Jr characteristic value. When a?+l

At the open boundary (j=1),

+
is specified, Jr

takes the value:
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+ _ - 4 ntl
Jo=J, % -1 %1 (104)

+
When (um)n+l is specified, Jr takes the value
1

+ _ =
JL.o=20) J. (105)

1 i
For the computer codes described in the report, the inflow boundary

is assumed to be located far enough upstream that the radius of curvature of

streamlines is large enough that the curvature term (l/hmhe)(ahelam) may be

neglected. The resulting equations describing the upstream flow are:

+_+
DJ _ g (106)
Dt
DJ
= 107}
e 0 1o7;
Due
= 10
= = 0 (108)
Ds _ 9 (109)
Dt

The constraint equation, equation (94), is not used and the grid is
constructed such that the hub and tip casing slope are zero at the inflow
boundary so that u,. may be assumed to be zero.

Two input options are provided in the computer code for specifying
the inflow boundary condition. The primary option uses the freedom to spe-

. n+ . .
cify a 1 to maintain constant values of total pressure and total tem—

1

perature at the inflow boundary. The user may specify the values of total
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pressure and temperature as a function of radius but may not specify the
inlet velocity. This option is the normal one and does not specify the inlet
mass flow rate. With some initial conditions, this inflow boundary condition
option can become unstable. A second option is provided for use with the
unstable option 1 cases. In option 2, the value of the downstream running
characteristic, J:, is specified directly by specifying the desired value of
the uniform far—upstream Mach number. The value of the J: characteristic is
calculated as:

i =(u) +=2-a =[iR]a (M +L] (110)

r m’ up Y-1 "up fo) up Y-1

Use of option 2 will usually lead to a small total pressure error at the inflow
boundary.

For both options, once values for J: and J;_ are known, the values

of u;+l and a?+1 are calculated using equations (102) and (103). The
+
values of T? l, p?+l, e?+l are calculated using the input values of

total temperature and the isentropic flow relations. The value of
(ue):+l is specified by the user and the radial velocity (urin+l is
assumed to be zero. For option 2, the J: characteristic value is specified
by the user, while, for option 1 the J: characteristic value is selected
through iteration on the value of a?+1 to match the input value of total
pressure.
Downstream or Outflow Boundary Conditions

Outflow boundary condition formulations closely follow the model

for the inflow boundary conditions, equations (91) through (94). However,

for subsonic flow, as shown in Figure 15, only one characteristic, J;,

brings information into the computation domain. For supersonic flow, no
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characteristics bring information into the computational domain. For sub-
sonic flow, the Information to be specified is the far—-downstream static
pressure, while, for supersonic flow, no downstream boundary condition may be
imposed. The downstream boundary 1s assumed to be located far enough
downstream that the streamline radius of curvature may be assumed to be zero
and the radial velocity may be assumed to be zero. The equations to be

solved are:

DJ

e - O (111)

Mo _ (112)

Dt

3P Plg

3F = - (113)
and

Ds _

3 =0 (114)

Since the swirl velocity on the outflow boundary is determined by the
interior solution, the exit static pressure may not be specified arbitrarily
as a function of radius. To avoid this problem a static pressure on the
inner casing 1s specified and the radial static pressure variation 1s calcu-
lated from equations (113) and (114). The exit static pressure variation is
calculated by first extrapolating the theta-averaged values of JI and ug to
the last computational plane (j=Nx) from the upstream computational planes
(j=NX-1 and j=Nx—-2). The resulting centrifugal force gradient at the outflow
plane is balanced by the radial pressure gradient. The radial pressure gra-
dient is calculated from equation (113), using the extrapolated values of

u, and density, p, by trapezoidal rule integration. The final exit density

9
and speed of sound, a, are then calculated using the isentropic flow
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assumption, equation (114). The exit velocity is then calculated from the

value of the extrapolated JI characteristic. The radial velocity 1s also

assumed to be zero.

These boundary conditions are equivalent to the physical
constraints ilmposed when a compressor is tested. Inlet or reservolr con-
ditions are specified, usually atmospheric stagnation conditions, and the
inlet swirl velocity is specified, usually zero. Downstream of the
compressor, some throttling device is used to determine the compressor
operating point. A particular operating point 1s determined by the Intersec-
tion of the compressor characteristic and the throttle characteristic. The
operation of this device could be simulated by specifying either the
compressor static pressure ratio or the mass flow. It is computationally
somewhat easier to specify the rotor static pressure ratio.

No attempt was made to calculate the actual flow at the throttle or
exit boundary, and hence account for the effect of disturbaances there. Such
a calculation, especlally in the strougly rotating flow downstream of the
rotor, is potentially as difficult as the through-flow calculation itself.
This simplification does imply some inconsistencies at the boundaries, while
at the upstream boundary the transmission of acoustic disturbances is
falsified; at the downstream boundary vorticity convection is distorted. The
acoustlc disturbances carry very little energy and thelr falsificatioun has
been shown to have very little influence on the flow over the rotor. When
the downstream perturbations are not calculated, the effective model of the
flow beyond the downstream computational boundary is one which 1s axisym-
metric and uniform in the streamwise direction. Such a flow can have no

radial vorticity and is potentially inconsistent with the blade flow solution
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i1f that solution requires a significant amount of radial vorticity to be pre-
sent at the computational boundary. For the present calculations, this
inconsistency does not appear to be important even though some radial vor-
ticity is shed by the rotor.
Kutta Condition

The Kutta condition, a uniqueness condition imposed on inviscid
flow solutions in order to approximate the true viscous flow solution, is
imposed quite simply for the compressor rotors studied. No attempt is made
to model blunt or cusped trailing edges. Instead, the flow at the last axial
grid points on the pressure and suction surfaces is assumed to be parallel to
the blades and to have equal static pressures. This condition is adequate
for compressor rotors designed to have subsonic outflow, but would require
modification for turbine blade rows having supersonic outflow.

Spinners

Several attempts were made to model a spinner, including one that
would smoothly merge with the centerline, but these attempts were
unsuccessful. High radial velocities tended to build up at the points close
to the centerline, resulting in mass flow defects of the order of 5%Z. Since
r=0 is a singular point in a cylindrical coordinate system, the implemen-—
tation of boundary conditions at the centerline can pose some problems. In
addition, the centerline is a stagnation streamline, and stagnation points
pose stability problems. 1In view of the above problems, the spinner was
finally replaced by a cylindrical centerbody with a hub to tip ratio of 0.3.
Several promising attempts to deal with centerline procedures in a cylindri-
cal coordinate system have been published (see reference 21 for example), and

the spinner problem should now be re—examined.
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COMPUTER CODE DESCRIPTION

The numerical procedures previously described have been implemented
in two computer programs. The first, MESH3D, generates the finite difference
grids, interpolates blade geometry data from manufacturing coordinate sec-—
tions to the finite difference grid, computes blade normal vectors and
curvatures, and generates coordinate stretching derivatives (3R/3r) etc.

The second, BLADE3D, generates initial conditions 1f desired, integrates the
appropriate equations of motion, and prints a solution matrix. A third pro-
gram, GRAPH3D, produces two output files which may be used for user defined
graphics ~nd produces some rudimentary graphics output.

Grid Generation Program: MESH3D

The grid generation program has four important geometric inputs:

1) (r,2z) coordinate pairs describing hub and tip casing shapes; 2) (r,z)
coordinate pairs describing location of blade row leading and tralling edges;
3) (r,z) coordinate pailrs describing damper geometry where applicable; and 4)
(r,9,2) coordinates describing the blade row geometry.

Operation of MESH3D on these geometric quantities 1s best described
using Figure 16 (the axial grid numbering scheme) and Figure 17 (simplified
MESH3D flow chart). The input to the main program is the grid numbering
information, particularly the axial grid numbering scheme, which 18 necessary
to size the finite difference grid and control its generation. Subroutine
XRGRID controls the input of all axisymmetric geometric data and generates
(r,z) coordinates of the finite difference grid and calculates some of the
coordinate stretching derivatives [(3X/3z), (3X/3r), (3R/3r), (3R/3z)].
Subroutine CALT controls input of blade surface geometry, interpolates this

data onto the finite difference grid, calculates blade normal vectors, and
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calculates blade radii of curvature. Subroutine BLDT calculates [(30/3r),
(30/36), and (30/3z)] and creates an input file for BLADE3D containing all
the required blade geometry information. Subroutine BUILD calculates hub
and tip normal vectors as well as the radius of curvature along the axial
direction, and subroutine SVGRID creates input files for BLADE3D containing
all required information about grid coordinates.
Numerical Integration Program: BLADE3D

The numerical integration program is modular in operation, can be
executed either on large mainframe computers or on minicomputers with a mini-
mum of code changes, and is inherently restartable. A simplified flow chart
of BLADE3D is shown in Figure 18. The main program input describes the
axial grid numbering scheme (which is identical to that of MESH3D), describes
the operator sequence to be executed, the integration time step, and the
number of operator sequences to be executed. Subroutine OPEN begins the
calculation setup process by reading two data files generated by MESH3D
which describe the blade row geometry. Subroutine START completes the setup
process either by reading a previous solution matrix (solution vector U at
all grid points) or generating a new starting solution. Subroutine THREE
controls printing of starting and final solutions as well as execution of the
requested operator sequence. The finite difference operators equations
(40-44) are implemented in subroutines BLOCKX, BLOCKT, and BLOCKR.
Subroutine CLOSE outputs the final solution matrix. A lengthy calculation
will usually be run in several sections, and this operation of START and
CLOSE provides a needed restart capability since the intermediate results are

available for backup.
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Graphical Output Program: GRAPH3D

The graphics output program produces two solution matrix data
files which contain all information needed for user defined graphics
packages. The first file contains for each node point in the finite
difference grid its physical space r,0,z coordinates, the solution vector
[ro, rpu_, rpug, Tpu,, rEt] and a modified solution vector [Pt’ Mr’ MG’
Mz, Tt]' The second file contains the computed streamline positions inside
the blade row volume. The starting point for each streamline calculation is
a finite difference grid node at the rotor leading edge. This second file
contains the (r,0,z) coordinates of a streamline position and the solution
vector at that point, [rp, Tpu_, Tpug, Tpu, rEt, Pt’ Mr’ Mg, Mz’ Tt]'
The computed streamline positions thus correspond to the traditional S1
and S2 streamsurface definitioms.

In addition to these data files, GRAPH3D also produces printer/

plotter plots of blade surface pressure and Mach number for each radial

grid plane and each S2 surface, -

For user convenience, a subroutine, called USERREAD, is included

with GRAPH3D which may be used to read the two solution matrix data files.
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INPUT DICTIONARY FOR MESH3D

Input variables may be described in any consistent set of units
since the MESH3D and BLADE3D programs contain only non—dimensional units.
The leagth scale selected is usually the tip casing radius at the farthest
point upstream; the velocity scale selected is the stagnation temperature
speed of sound at this same point. Each time geometric quantities are
input, a scaling factor 1s required which converts any dimensional
geometric quantity into a nondimensional quantity. In this way, the most
convenient set of units may be 1nput for each geometric quantity, which is
then nondimensionalized by the code. 1In addition when axial coordinates
are laput, a coordinate system origin adjustment factor is also required.
This additive factor corrects possible coordinate origin differences bet-
ween sets of geometric input. The input variables for MESH3D in the

order they appear in Table 4.1, are the following:

Main Program Input
TITLE Title for problem identification, any information may appear in the

first 70 columns.

NBL Number of blades in row, must be > 1.

NX Number of axial grid planes, must be 3 < NX < 100
NTH Number of theta grid planes, must be 3 < NIH < 17
NR Number of radial grid planes' must be 3 { NR < 18
*N1 Axial plane containing the blade row leading edge
*N2 Axial plane containing the blade row trailing edge

*Note: N2-N1 must be an even integer < 50.
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KUTTA Axial plane at which Kutta condition is to be applied.
KUTTA = N2 normally.

ILE Axial plane containing the damper leading edge. A value of
0 indicates no damper.

ITE Axial plane containing the damper trailing edge. A value
of 0 indicates no damper.

SPHALF Mesh type parameter. If = 0, then first mesh system 1s
generated. If = 0.5 the second or staggered mesh system is
generated. Only the staggered mesh may be used with the
current version of BLADE3D, so SPHALF = 0.5 should be used.

TLAN Type of transform derivative calculation. If IAN =0
then metric calculation done by finite difference method
using node (r,9,z) positions and if = 1 metric calcula-
tion is done by analytic functions. IAN = 1 is

recommended.
IWR FORTRAN unit number for MESH3D bulk output, may be equal
to 6 or greater than 9.
IDMP MESH3D debug output flag, allowable values are
0 => none (recommended value)
1 => SUBROUTINE GRID output
2 => SUBROUTINE INTER output
3 => SUBROUTINE GETTHA output
4 => SUBROUTINE CALDR output
5,6 => SUBROUTINE CALDER output
-1 => All subroutines (not recommended)
KX Axial coordinate packing factor. KX = 0.1 corresponds

to non—-packed grids. KX = 3.0 corresponds to highly packed
grids. See special instruction number 1 for aid in
selecting KX.

Al Radial Grid line relaxation factor, used to make com-—
putational space grid lines approximate Z = constant lines
near inflow and outflow boundary. A value of 3.0 appears
to be best. See special instruction unumber 1 for aid in
selecting Al.

TOL Convergence tolerance on axial grid plane positions. A
value of 0.0001 is a tight tolerance and a value of 0.001
is recommended.
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Convergence choice parameter. A value of 0 will cause
axial plane position calculation to abort after 10
iterations. Nonconvergence is usually caused by input
errors in either tip and hub casing positions or leading
and trailing edge positions. A value of 1 allows uncon-
verged plane positions to be accepted. IAB = 0 is

Subroutine GRID Input

Number of coordinate palrs describing hub casing contour.

Input hub coordinates will be scaled as: XH =

Coordinate Pairs describing hub casing contour.

Number of coordinate pairs describing tip casing contours.
Input tip coordinates will be scaled as:

XT = (XT + ADJ2)/SCALE2

Coordinate pairs describing tip casing contour.

Coordinates — See Also Special Instruction Number 2

Number of coordinate pairs describing leading blade edge
location. 2 < NZLE < 20

Input leading edge variables scaled as:
ZLE = (ZLE + ADJ3)/SCALE3

IAB
recommended.
HUB Coordinates
NRH
2 < NRH £ 50.
SCALE1
(XH + ADJ1)/SCALE1l
and
RH = RH/SCALE1l
ADJ1
XH and RH
TIP Coordinates
NRT
2 < NRT < 50.
SCALE2
and
RT = RT/SCALE2
ADJ2 -
XT and RT
Leading Edge
NZLE
SCALE3
and
RLE = RLE/SCALE3
ADJ3
ZLE and RLE

Coordinate pairs describing blade leading edge contour.
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Trailing Edge Coordinates

NZTE

SCALE4

ADJ4

Number of coordinate pairs describing blade trailing edge
contour. 2 < NZTE < 20

Input tralling edge variables scaled as:
ZTE = (ZTE + ADJ4)/SCALE4

and
RTE = RTE/SCALE4

DAMPER COORDINATES - SKIP IF BLADE ROW HAS NO DAMPER

Damper Lower

Surface

XTE, ZTE

NZL

SCALES

ADJ5

ZLL; RL

Damper Upper

Coordinate palirs describing blade trailing edge contour.

Number of coordinate pairs describing damper lower
surface. 2 < NZL < 20

Input damper lower surface variables will be scaled as:
ZLL = (ZLL + ADJ5)/SCALES

and
RL = RL/SCALES

Coordinate palrs describing damper lower surface.

Surface

NZU

SCALE6

ADJ6

ZU, RU

Cl

TITLE2

NPTS

Number of coordinate pairs describing damper upper surface.
2 < NZU < 20

Input variables will be scaled as:
ZU = (ZU + ADJ6)/SCALE6

and
RU = RU/SCALE6
Coordinate pairs describing damper upper surface contour.
Location of damper in computational space. 0 <Cl K 1.0;
Cl may take only certain values, see special instruction
number 3.

Subroutine CALT Input

Title Card for blade geometry input set.

Number of points on a specification line, see Figure 19
and special instructions. Maximum value is 25.
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MID(I,J,K)
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Number of stacked blade sections, see Figure 19. Maximum
value is 15.

Input blade data scaled as:
Z = (Z + ADJ7)/SCALE7
R = R/SCALE7

Blade geometry input flag, either O or 1.
See discussion below for option forms.

Number of blades in blade row.
Coordinate origin adjustment factor.

Three dimensional coordinate array of blade pressure and
suction surface positions. First index varies from 1 to
NL, while second index varies from 1 to NPTS. For the
third index a value of 1 1s used to store radial
coordinate; a value of 2 is used to store axial coordinate;
a value of 3 is used to store theta coordinate of pressure
surface; a value of 4 is used to store theta coordinate of

suction surface. See also special instruction number 4.

Variable
MID(1,J,1)
MID(NL,J,1)
MIDn(1,J,2)
MID(NL,J,2)

MID(1,J,3)

MID(NL,J,3)

MID(1,J,4)

MID(NL,J,4)

Comments
NPTS Z coordinate values for blade section #1
NPTS Z coordinate values for blade section #NL
NPTS R coordinate values for blade section #1
NPTS R coordinate values for blade section #NL

NPTS values of either 9 or O for blade
MCL ps

section #1

NPTS values of either QM

L or 6 s for blade
section #NL P

c

NPTS values of either Ot or ass for blade

section #1
NPTS values of either Bt or ess for blade
section #NL
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Special Notes and Restrictions on Input Variables for MESH3D

1. The best values of KX and Al can only be determined by trial
and error. A small value of KX (0.01) leads to nearly unpacked X-R grids,
see figure 20. Larger values of KX progressively pack X-R grid planes near
the blade leading and tralling edges while increasing the grid spacing in the
far field, see figures 20 and 21. The best value of Al depends on KX and

should be selected after KX 1s selected, see figure 22,

2. Due to the placement of X-0 grid planes outside the normal hub
and tip casings, it is lmperative that definitions of blade leading edge and
trailing edge geometry be continued at least 10 percent of blade span outside

the hub and tip casings.

3. The constant Cl determines the part—span shroud placement in
computational space. The restriction on shroud placement is that it must lie
midway between two X-© grid planes. Thus the values of Cl are restricted to
FLOAT[(IDL-1)/(NR-2)]. 1IDL is the number of the X-8 grid plane immediately
below the damper. It is suggested that to generate a grid containing a part-
span shroud that first a grid without a part-span shroud be generated. The

values of ILE, ITE, and IDL may then be determined by inspection.

4., Blade geometry is given by four two—dimensional arrays, each
row of which describes a blade section. Blade sections are numbered from 1
to NL. The first blade section at the hub and the last one at the tip shall
not necessarily conform to the hub or tip casing profile, but may be given
within the flow region, crossing the boundary, or completely outside of the

boundary. Column 1 and column 2 are used to describe the axial and radial
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positions of the blade section, while column 3 and column 4 will deséribe
either the angular position of the mean camber line (in radians) and the
tangential thickness (in radians) of the blade section or the angular posi-
tion (in radians) of the blade pressure surface and the angular position of
the suction surface of same blade. Option flag IM = O requires mean camber
line and thickness while IM = 1 requires positions of pressure and suction
surfaces. See Figure 23 for definition of tangential thickness. These blade

coordinates are stored in the single three-dimensional array MID(I,J,K).

5. All variables allocated 5 columns in Table 4.1 are
integer variables and must be right justified. All variables allocated 10

columns are real variables which should have decimal point included.
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Table 4.1. Input Card Format for MESH3D

1 6 11 ;16 21 26 |31 36 41 46 |51 56 |61 66 71 76

TITLE

NBL

NX | NTH} NR

Nl N2 [KUTTA| ILE | ITE

SPHALF
TAN
IWR |IDMP|
KX Al TOL IaB
NRH |SCALELl ADJ1 J t
XH(1) RH (1)
i
- - f Hub Casing Coordinates
: : '
XH (NRH) RH (NRH) !
NRT |SCALEZ2 ADJ2 R
XT (1) RT (1) f
- . Y Tip Casing Coordinates

XT(NRT) | XT(NRT) |

NZLE}{ SCALE3 ADJ3

ZLE(1) RLE(1)

- N Leading Edge Coordinates

. |

ZLE(NZLE) JRLE(NZLE)




o Cott R e

1 S— U e } j i . [ ey '
; l
RN O LN 0 =Y O ECR N o O o O L
NZTE|{ SCALE4 ADJ4
XTE (1) RTE (1)
T $~ Trailing Edge Coordinates
: ° -...ﬂ
XTE(NZTE)| RTE (NZTE)
*** NOTE NEXT SET OF DESCRIPTOR CARDS **%*
*** ARE PRESENT ONLY IF A DAMPER IS K&k '
**% TNCLUDED IN THE SOLUTION *kk :
: =" A TomTmem e T :
. NZL | SCALE5 ADJ5 i
P I e J
{ ZLL(1) RL(1) :
: ? Damper Lower Surface Coordinates .
. . )
ZLL(NZL) RL (NZL)
S J
. | 1
NZU { SCALE6 | ADJ6 ' !
N S i
ZU(1) RU(1)
PR
. ' . 7 Damper Upper Surface Coordinates
ZU (NZU) RU(NZU) .
—_t |
Cl
**% NOTE INPUT SEQUENCE RESUMES HERE *#%%*
*** JF NO DAMPER IS SELECTED k%
TITLEZ2
e i g ..‘]‘.\., e o v sin e+ e+ el e oo e
NPT% NL SCALE7 IV NBL'_ ADJ7 l }
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. MID(1,1,1) to MID(NPTS,l,l) NL SETS OF NPTS POINTS. BLADE Z COORDINATES.
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INPUT DICTIONARY FOR BLADE3D

The input variables for BLADE3D, in the order they appear in

Table 4.2, are the following:

TITLE

NBL

NX

NTH

NR

N1

N2

KUTTA

ILE

ITE

IDL

IDH

IFCL

IROT

GAMMA

Title for problem identification, any information may
appear in the first 70 columns

Number of blades in row, must be > 1

Number of axial grid planes, must be 3 < NX < 100
Number of theta grid planes, must be 3 < NTH < 17
Number of radial grid planes, must be 3 < NR < 18
Axial plane containing the blade row leading edge

Axial plane containing the blade row trailing edge

Axial plane at which Kutta condition is to be applied.
KUTTA = N2 normally.

Axial plane containing the damper leading edge. A value of
0 indicates no damper.

Axial plane containing the damper trailing edge. A value
of 0 indicates no damper.

Radial grid line below damper, see Figure 16. If no damper
then IDL = 1.

Radial grid line above damper, see Figure 16. If no damper
then IDH = NR.

IFCL=0 gives non-conservation law form equations, see
equation 17. IFCF=1 gives full conservation law form, see
equation 18.

If IROT=0 the fully unsteady equation sets, equation 17 or 18,
are used. When IROT=1 a pseudo-unsteady equation set is used
in which the energy equation is replaced with a constant
rothalpy assumption.

Ratio of gas specific heats, usually 1.4.



CAPPA

PDOWN

INOPT

NUTH

RUTH, UTHIN

NTIT

RTT, TTIN

NPT
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Blade row angular rotation speed parameter equal to
(Wrti /ag). 1is rotation speed in radians per second,

gs for upstream tip radius (reference length for non-
dEmgnsional lengths), a 1is far upstream stagnation speed
of sound on tip streamlfne (reference velocity for non-
dimensional velocities).

Artificial viscosity parameter, usually equal to 0.5. A
value of 0.1 would be very low damping while a value of 1.0
would be high damping.

The static pressure to be set on the last ax1al grid point
at the hub radius. This pressure, (P/p a, 2), controls the
blade row pressure ratio.

INOPT=1 corresponds to inflow boundary condition option 1 in
which the user specifies the upstream total pressure and
temperature. INOPT=2 corresponds to inflow boundary condition
option 2 in which the user sRecifies upstream total tempera-
ture and the values of the J characteristic (see inlet B.C.
discussion).

Number of radial positions and absolute tangential velocity
pairs which specify inlet tangential velocity as a function
of radius. If NUTH=1, a constant value of UTHIN is produced
and the input value of RUTH is ignored. NUTH must be < 20.

Radial position and absolute tangential velocity theta averaged.
UTHIN = Ue/a0 and RUTU is the scaled radius, RUTH = R/Rref'

Number of radial positions and total temperature pairs which
specify inlet absolute total temperature as a function of
radius. If NTT=1, a constant value of TTIN is produced and
the input value of RTT is ignored. NTT must be X 20.

Radial position and absolute total temperature, theta
averaged. TTIN is the ratio between the local total tem—
perature and the reference temperature. The reference tem-—
perature 1is defined by a = JyRIo and RIT is the scaled
radius, RIT = R/R of*

Number of radial position and total pressure pairs which
speclify inlet absolute total pressure as a function of
radius. If NPT=1, constant value of PTIN(J?) is produced
and the input value of RPT is ignored. NPT must be 220.



RPT, PTIN
or
RPT, JRIN

UPMACH

DT

NSTEP

IBEG

NOR(I,J)

Iop J

™ML J =2

IEX J

NP1

CODE(NP1)

JST(NPL)

JEND(NP1)

"
[

W
w

o
N

Radial position and absolute total pressure, theta averaged.
PTIN is the ratio between the local total pressure and the
reference stagnatlon pressure. P = 1/y and RPT = R/R

When INOPT = 2, JY values are inpif o instead of PTIN. ref

Far upstream uniform absolute meridional Mach number. Used
only when initial conditions are generated by BLADE3D,

Scaled time step to be used. If DT = 0.0 then time step

is selected by program. See special instruction for rules
for selecting DT,

Number of split operator cycles to be run. Several hundred
operator cycles are usually required for a solution. Each
cycle advances the solution several time steps. Solution
is usually run only a few hundred cycles at a time to pro-
vide a restart capability.

If IBEG = 1, a starting solution is generated.

The MacCormack operator sequence to be run is stored in a
two-dimensional array, NOR (10,3). Each row specifies an
operator (X direction, © direction or R direction), the
number of times each operation is to be executed and the
time step multiple to be used. The entire operator
sequence 1s executed NSTEP times.

The individual codes associated with each row are:
Operator Code 1+X operator, 2+0 operator and 3*R
operator

Time step multiple

Execution time multiple

See special instructions and input card format sheet for
more information about operator sequence,

Number of different sets of solution matrix information to
be printed before operator sequence 1is begun.

Determines type of printed solution variables. See special
instructions for definition of allowed values.

First axial station to be included in printed informatiom.

Last axial station to be included in printed information.



LST(NP1)

LEND(NP1)

NP2

NTIMES

CODE(NP2)

NST(NP2)
JEND(NP2)
LST(NP2)

LEND(NP2)

NP 3

CODE(NP3)

JST(NP3)

JEND(NP3)

LST(NP3)

LEND(NP3)
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First radial station to be included in printed information.

Last radial station to be included in printed information.

Number of different sets of solution matrix information to
be printed during operator sequence. I1f NP2 = 0, no inter-
mediate results are printed,

Solution matrix is printed before the first operator
sequence, after NSTEP sequences, and after every NTIMES
sequence during the solution integration. NTIMES = 0 gives
no Iintermediate printed results.

Determines type of printed solution variables. See special
instructions for definition of allowed values.

First axial station to be included in printed information.
Last axlal station to be included in printed information.
First radial station to be included in printed information.

Last radial station to be included in printed information.

Number of different sets of solution matrix information to
be printed after operator sequence is completed.

Determines type of printed solution variables. See special
instructions for definition of allowed values.

First axial station to be included in printed information.

Last axial station to be included in printed information.

First radial station to be included in printed information.

Last radial station to be included in printed information.
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Special Instructions for BLADE3D Input

l. DT is the non—dimensional integration time step. DT =
[(Gtao)/(rref)]. The maximum DT in the absence of artificial damping or
shock waves is given by equations 53, 54 and 55 and is printed out with each
execution of matrix print routine. This maximum value must be reduced by
approximately 40% for calculations with strong shocks. The suggested maximum

value of DT is printed at the end of each code run.

2. The sequence of MacCormack split operators to be run must be
determined for each case using the principle that (DT)x’ (DT)R and (DT)0
should be as close to the maximum allowed value while maintaining a symmetric
sequence, as described by MacCormack.2 See also equation 51.

Denoting the operators as Lx(DTx), L@ (DTO), LR(DTR), then a simple

sequence may be written as:

=n+2 _ o
Uj = [LX(DT}z LG(DTG)) LR(DTRLO(_DTO)LX(DTX)] Uj

which advances the solution from time level n to level n + 2. This sequence

assumes (DT ) ~ (DT@) and (DTx) ~ O.S(DTR) . A more typical
X max max max max
sequence for transonic compressors arises when

~ 20(DT .
(0Tp)  x 10 (DT = 2000TY)
max max max

A suitable, but non-unique, sequence for this case would be:

=nt20 _ oL (DT U™
U] = (10 L (DT ), 5Ly(2DT), L, (20DT.), 5Ly (2DTy), 10L (DT )] 3
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In general an operator is described by three parameters: the base time step
(DT), a time step multiple (1, 2 or 20 above), and an execution multiple (10,
5 or 1 above).

The full operator sequence is stored in NOR(I,J) which for above

example would appear as:

Operator I=1 I =2 I=3
Number Operator Time Step Execution
L Key Multiplier Multiple
J=1 1 1 10
J =2 2 2 5
J=3 3 20 1
J =24 2 2 5
J=235 1 1 10

The operator keys are 1 » Lx’ 2 » LO’ 3> LR and the maximum number of opera-

tors in a sequence is 10.

4. The value of CODE(I) determines the solution variable to be

printed. The allowed values are:



66

Value Printed Variables
1 Conservation variables (rp, rpur, Tpug, TPU,, rpEt)
2 Physical variables (p, U, Uy, U, Et)
3 Physical variables in coordinate system rotating with
blade row (p, Mr’ Me , Mz, P)
rel
4 Physical variables in coordinate system rotating with
blade row (Pt’ Mo, Mg, L Tt)
rel
) Physical variables in laboratory coordinate system
(Pt’ Mr’ Me, Mz, Tt)

In addition, when codes 4 and 5 are selected, a summary of mass—flow-weighted

axisymmetric variables is preseunted.

5. All variables allocated 5 columns in Table 4.2 are integer
variables and must be right justified. All variables allocated 10 colummns

are real variables and should have decimal point included.
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Table 4.2. Input Card Format for BLADE3D
} - : ] i g |
L f L L Lo e o J Jon o fo o | [
E TITLE
ZNBL
NX | NTH| MR
N1 | N2 KUTTA IL;-;&;
H
- IDL {IDH |IFCL |IROT }
GAMMA W CAPPA PDOWN ] i
INOPT
NUTH ] i
RUTH(1) UTHIN(1) Inlet Swirl Velocity 2

NTT

RTT(1) TTIN(1)
RTT (NTT) TTIN(NTT)
{NPT
é RPT(1)  PTIN(1)
[ :
:RPT(NPT) PTIN(NPT)

| UPMACH

RUTH (NUTH) UTHIN(NUTF)

>

M

7 Inlet Stagnation Temperature

) Inlet Stagnation Pressure

+ .
or Jr characteristic values
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]
[NSTEP IBEG

© DT [
‘ *%% UP TO 10 CARDS DESCRIBING
: *%% OPERATOR SEQUENCE ARE NEXT.
*%* SEQUENCE IS TERMINATED BY A BLANK

; %*%% CARD, SEQUENCE IS STORED IN NOR(I,J)
14

IOP | IML |IEX
S.__._;._.‘....- ...mm._l_- e e —— e eram et et b s e e e e mam
d UP TO 9 MORE DESCRIPTOR CARDS

BLANK CARD
NP1

CODE| JST(JEND| LST{LEND

v

*%#%NP1-1 MORE CARDS DESCRIBING TYPE

*%%* OF PRINTED OUTPUT DESIRED BEFORE THE

OPERATOR SEQUENCE

. e s e

e

—

|
NP2 |NTIMES

CODE | JST

JEND| LST LEN?J

T A

*%% NP2-1 MORE CARDS DESCRIBING TYPE

*%% OF PRINTED OUTPUT DESTRED AFTER THE OPERATOR SEQUENCE

NP3

CODE } JST

JEND] LST} LEND

s e

L

#*%% NP3-~-1 MORE CARDS DESCRIBING TYPE

#%% QF PRINTED OUTPUT DESIRED DURING THE OPERATOR SEQUENCE
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Data Files Used for MESH3D, BLADE3D and GRAPH3D

Several data files are used by MESH3D, BLADE3D and GRAPH3D as

input files, scratch files, and permanent storage files.

These files and

their characteristics are shown below.

Table 4.3. Data Files for MESH3D
FORTRAN T
Unit
Number | Type of File | _ Comments
1 Scratch Used by BLDT
__UNFORMATTED —
2 Permanent Used by RGRID, INSEC, GETTHA, CALDR, CALDER
UNFORMATTED for scratch file and BLDT for creating file
) | TGEM to be used by BLADE3D
3 Scratch Used by XRGRID, RGRID, BUILD
_ UNFORMATTED
4 Permanent Used by GETTHA, CALDR, CALDER,
UNFORMATTED BLDT as scratch file and BUILD for creating
_____ ) . file GE®M (to be used by MESH3D)
5 Input Data All Input Data in this file. Used by
) ~ FORMATTED _MESH3D, BLADE3D, XRGRID, FILL, RMID
6 Output Data Message and Error file used by all routines
_FORMATTED o . ]
8 Scratch Used by INSEC, GETTHA, CALDR, CALDER
- UNFORMATTED
9 Scratch Used by CALDER, BLDT
UNFORMATTED o i
12 Permanent Used by SVGRID to create file SVSAVE which
UNFORMATTED contains r,8,z coordinates of grid nodes
IWR Output Data Used by all routines as an optional bulk
FORMATTED output file
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Table 4.4 Data Files for BLADE3D

FORTRAN
Unit
Number Type of File Comments
1 Permanent Initial solution matrix storage
UNFORMATTED used by START
2 Permanent Blade geometry for MESH3D, file TGEOM
UNFORMATTED used by OPEN
3 Permanent Axisymmetric geometry file from MESH3D,
UNFORMATTED file GEOM used by OPEN
5 Input Data All input data in this file, used by MAIN
FORMATTED program and MTHREE
6 Output Data Used by all routines for Printed Output
FORMATTED )
7 Permanent Final solution matrix written by CLOSE

UNFORMATTED
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Table 4.5 Data Files for GRAPH3D

FORTRAN
Unit
Number Type of File Comments
1 Permanent Solution Matrix File from BLADE3D
UNFORMATTED unit number 7
2 Permanent File TGEOM from MESH3D unit number 2
UNFORMATTED
3 Permanent File GEOM from MESH3D unit number 4
UNFORMATTED
4 Permanent File SVSAVE from MESH3D unit number 12
UNFORMATTED
5 Permanent Grid Numbering Information from BLADE3D
FORMATTED unit number 5
6 Output Data Used for Printed Output
FORMATTED
7 Permanent Solution Matrix Storage for Entire Finite
UNFORMATTED Difference Grid
8 Permanent Solution Matrix Storage ‘for S1-S2 Stream
UNFORMATTED Surfaces

Description of Printed Output for MESH3D

The printed output from MESH3D consists of a message and error file
which reproduces the axial grid numbering information, a running execution
sequence log for major subtoutines, and a bulk output file. This message
file is of critical importance in locating input or logical errors in MESH3D
operation. A sample message file 1s shown in Figure 24. The initial portion
reproduces the axial grid input data, and if any parameter is outside of
allowed ranges an error message will be printed in this file. Program execu-
tion terminates when an input error is found. After successful completion of

each principal subroutine a message is printed. This run file also contains



72

a set of warning messages from subroutine CALT which are generated when the
blade row geometric input data must be extrapolated rather than interpolated.
Printed values of blade row normal vectors and curvatures should be closely
monitored to insure that the linear extrapolation performed represents the
blade row geometry adequately. No further warning or error messages are nor-
mally produced by CALT, BLDT or BUILD.

The bulk output from MESH3D reproduces the geometric input data and
the calculated results from MESH3D. Figure 25 illustrates the raw data input
check for the hub and tip casing geometry, leading and trailing edge
geometry, and damper geometry. This data is the "as read” geometry for each
input data class. Figure 26 illustrates the scaled data smoothness check for
XRGRID input. This data includes the scaled axial and radial coordinates and
the first and second derivatives of radial position with respect to axial
position. Small errors in these input quantities are usually quite apparent
because of their influence on the second derivatives. The principal output
from subroutine XRGRID is illustrated in Figure 27 and consists of the axial
and radial positions of the x and r coordinate line intersections in physical
space for each axial grid station. The calculated metric derivatives
(9X/3z), (3X%X/ar), (3R/3r) and (3R/9z) are also shown.

Bulk data output for subroutine CALT is the scaled blade row
geometry as well as first and second derivatives of theta position with axial
position for both pressure surface and suction surface. Best results from
the calculation program BLADE3D are obtained when the first and second deri-
vatives are smooth. When "jumps" in either derivative occur special care
should be taken to insure that the input data accurately represents the blade

design intent. This bulk output is illustrated in Figure 28. The blade row
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normal vectors and radii of curvatures calculated from the input geometric
data are illustrated in Figure 29. This data is presented for each axial
grid station inside the blade row. Special attention should be paid to the
calculated radii of curvatures since small input errors greatly affect their
value. This output is generated by subroutine BLDT.

The final bulk output from MESH3D is generated by subroutine BUILD
and consists of the hub and tip slope and radius of curvature and the value
of the transformation Jacobian, equation 23, for each axial and radial

station. This output is illustrated in Figure 30.

Printed Output for BLADE3D

The printed output from BLADE3D begins by reproducing the input
card file directing a particular solution pass. Figure 31 illustrates output
from this first section. Particular attention should be paid to the printed
MacCormack Operator sequence to insure that it 1s the one intended and that
it is a symmetric sequence. At the user selected axial and radial node
points, the solution matrix will be displayed for all theta nodes. Figure 32
illustrates this output section. The content of this printed output,
variables and coordinate system, 1s determined by options selected inm the
card input file for BLADE3D. If print option 4 or 5 is selected, then con-
ventional theta averaged variables (meridional Mach numbers, total and
pressure and temperature ratios, etc.) are calculated and displayed. This
output is illustrated in Figure 33, Definitions of printed variables are

given in special instruction number 4 for BLADE3D.
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In addition to the user selected printed output, a substantial
amount of information is printed during the operator sequence in order
to document the history of a particular calculation. This information
is printed after each 100 operator sequences and consists of printer/plotter
plots of mass flow rate vs axial grid plane number, mid-span trailing edge
static pressure vs operator sequence number and mid-span blade static
pressure vs axial grid plane number. This information is the best guide
to solution convergence rate and should be monitored closely. Examples

of these three informational plots are shown in Figures 34, 35 and 36.

Output Description for GRAPH3D

The printed output from GRAPH3D consists of printer/plotter plots
of blade surface MACH number and static pressure for each S1 surface and
plots of S2 streamsurface positions for the pressure surface, mid-channel
surface and the suction surface. Examples of the S1 and S2 surface plots
are given in Figures 37 and 38, 1In addition{ a summary of S1 streamsurface-
theta averaged flow variables is presented for the grid planes corresponding
to the blade leading edge and the blade trailing edge. An example of this
output is shown in Figure 39.

Both user defined solution matrix storage files have the same
format which is specified in Table 4.6. Each FORTRAN record corresponds to
one grid node point and contains the radial, tangential and axial grid index
number, the non-dimensional radial, tangential and axial positions, the
nondimensional conservation variables (rp, rpur, rPug, rpuz, rEt) and the
nondimensional physical flow variables (Pt’ Mr’ MG’ Mz’ Tt). The finite
difference grid output file contains all axial plane numbers 1 through NX.

The S1-S2 streamsurface file contains only axial plane numbers N1 through N2.
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EXAMPLE CALCULATION

The computer codes described in the previous section were used to pre-
dict the flow through a low aspect ratio, transonic compressor rotor de-
signed by Urasek [22] of NASA LEWIS RESEARCH CENTER. This rotor has an
inlet hub to tip ratio of 0.375, an aspect ratio of 1.56 and an inlet
relative Mach number of 1.38. In conventional steady state testing at
NASA LeRC, the rotor was found to have a peak adiabatic efficiency of
90.6%, a total pressure ratio of 1.686 and a mass flow rate of 34.03
Kg/sec. In Blowdown Tunnel testing at MIT [23], the rotor was found to
have an adiabatic efficiency of 89.5%, a total pressure ratio of 1.677
and a mass flow rate of 33.3 Kg/sec.

The calculated operating point for the sample, inviscid calculation
was set such that the predicted passage shock pattern approximated that de-
termined in MIT BLOWDOWN COMPRESSOR TUNNEL flow visualization testing [24]. It
was found to be impossible to match the mid-span bow-shock shape, the
shape of tip wall static signature and the level of the tip wall static
measurements. Predicted overall performance parameters were found to be
a mass flow rate of 35.6 Kg/sec, a total pressure ratio of 1.756 and an
adiabatic efficiency of 94.2%. Having generally the same shock structure
at a higher mass flow rate and total pressure ratio is consistent with the
assumption of inviscid flow.

In order to verify that the calculated flow condition realistically
represents the test rotor performance, comparisons between calculated and
measured theta averaged performance is useful. A comparison of relative

flow angle at the rotor trailing edge is shown in Figure 40 along with the
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blade metal angles. For R/Rref< 0.90, the inviscid predictions follow the ex-
pected variation with respect to the metal angles and match the experimental

values. For R/Rre >0.90, the experimental values show considerably less

f
turning than would be expected either from deviation angle correlations
or the inviscid predictions. The observed flow angle variation is
difficult to explain on the basis of purely inviscid fluid phenomena,
since as is shown in Figures 41 and 42, the experimental rotor leading
edge meridional Mach numbers are nearly identical with the predicted
values while the experimental total temperature ratios are larger than
the predicted values. These phenomena suggest that either viscous
phenomena such as profile boundary layer separation or viscous linked
phenomena such as boundary layer flow migration significantly affect the

flow for R/R >0,90.
re

£
A comparison of the theta averaged rotor total pressurfe ratios is
shown in Figure 43, The inviscid prediction and the NASA LeRC steady
state measurements compare well over the entire span, while neither
compares well with the high response total pressure measurements made
in the MIT BLOWDOWN COMPRESSOR Tunnel. The origin of the high total
pressure area, R/Rref>’0.70, in the MIT data, has not yet been explained.
Measurements of the blade-to-blade variation in static density have
been reported in reference [24]. These studies have shown a rotor shock
system consisting of a moderate strength bow shock at mid-span, a weak
strength bow shock near the three—-quarter span radius and of a secondary

weak passage shock near the tip section. These characteristics are well

illustrated in three contour plots, figures 44, 45 and 46, which show the
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computed relative Mach number on blade-to-blade running surfaces. These

surfaces have the constant radii of R/Rr = 0,80, 0.90 and 0.95. At an

ef

R/R of 0.80 a strong oblique bow shock is predicted with the flow remaining

ref

subsonic nearly everywhere downstream of the shock. At an R/Rref of 0.90
a weak oblique bow shock is predicted, but the flow becomes supersonic in

a small region near the trailing edge. At an R/Rre of 0.95, a weak bow

f
shock is predicted with the flow remaining at supersonic across the entire
passage. The supersonic region is terminated by a weak compression or shock
and the flow is subsonic everywhere downstream of the trailing edge.

To clarify the predicted shock structure, relative Mach number contour
plots for the pressure and suction surface are shown in figures 47 and 48,
Figure 47 shows the flow to be subsonic over nearly the entire span. The
supersonic flow portion is terminated by a weak shock. The suction surface
flow pattern is much more complex as shown in figure 48, The flow is super-
sonic over a large fraction of the blade surface with two different passage
shocks evident. The suction surface shock structure is sketched in figure
49 which illustrates that the first passage shock, really the bow shock,
is a strong oblique shock near mid-span and a weak oblique shock near the

tip section. The two shock families merge near the three—quarter span point

where the shock turning angles are the same for both families.
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The intra-blade flow visualization technique does not allow resolution
of leading edge flow features for R/Rref>'0.85 and high response wall
static measurements must be used to experimentally probe the ghock structure
near the tip radius. Reference [23] presents wall static measurements at
the axial locations illustrated in Figure 50, and sample static pressure
traces are reproduced in Figures 51, 52 and 53. The predicted wall static
pressures are also compared to 5 cycle ensemble averages of these data in
Figures 54, 55 and 56. At the upstream measurement ports 2.0 and 56, the
shape of the computed wall static pressure trace closely follows the measured
5 cycle average, but the shock pressure rise is well under-predicted. At
the mid-chord measurement port 2.5, the shape of the pressure trace is well
predicted, but the mid-passage pressure level is predicted to be too high,

In order to clarify the comparison of predicted and measured wall
static pressures, the port 56 measurement is compared to the computed leading
edge pressure in Figure 57. This figure shows that the correct bow shock
pressure rise is predicted, but the predicted bow shock appears at the wrong
axial position. Since the predicted shock pressure rise is consistent with
the blade leading edge wedge angle, it must be concluded that the tip bow
shock is detached in the experiment. The most likely explanation for this
difference is that the experimental compressor has a tip "end-bend" or
local over—-twist to accommodate a tip end-wall boundary layer. The end-

wall boundary layer is absent in the MIT test configuration.
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To complete the documentation of the sample solution, blade surface
static pressures and blade surface Mach number distributions along each
radial grid plane are shown in Figures 58 through 87. Figures 58
through 72 illustrate the static pressure, and Figures 73 through 87
illustrate the relative coordinate system total Mach number. The nominal
upstream sonic line occurs at radial plane number 9, but supersonic flow
extends inward to radial plane number 5. These figures illustrate the
transition from subsonic flow to supersonic flow; the inviscid calculation
leading edge resolution in subsonic flow, Figures 59 and 73; and the shock
resolution, Figure 87. These figures show that the compromises in

leading edge resolution have not greatly degraded the solution.



Table 4.6.

Format of Solution Matrix Storage File Produced by GRAPH3D

TANGENTIAL STATION

RADIAL, TANGENTIAL,

FLOW VARIABLES

RECORD FLOW VARIABLES, LABORATORY
o (MBS | A fostrione T ro, oo, s, s sk | COOMINATES B, My X
. 3 5 FLOATING POINT VALUES 5 FLOATING POINT VALUES
2 k 1 VALUES
1 1 1 1 0.3093, 0., -C.4880 0.270, 0., 0,, 0.138, 0.493 0.714, 0., 0., 0.547, 1,00
2 1 2 1 0.3093, 0.,-0.4880 same same
NTH 1 NTH 1 0,3093, 0., -0.4880 same same
NTH + 1 2 1 1 0.3904, 0., -0,4790 0,337, 0,,0,, 0,179, 0,614 0.714, 0., 0., 0.547, 1.0
2NTH 2 NTH 1 0.3904, 0., -0.4790 same same
NTH * R NR NTH 1 1.0407,0., -0.4180 | 0,909, 0., 0., 0.466, 1.658 0.714, 0., 0., 0,539, 0.99
1+NTH*R 1 1 2 0.3801, 0., -0.4337 | 0.379,-0,10, 0.0,0.18, 0.519 0.714, -0,035, 0., 0.612, 1.0
2 #* NTH * NR NR NTH 2 1,0408, 0., -0.3536 0.817,-0.006, 0,001,0,442, 1,55 0,714, -0,015, 0.0, 0,546, 1.0
NX*#NTH*NR, NR NTH NX .9796, 0,0, 0,8463 1.231,0., 0,426, 0.631, 2.645 | 1,101, 0.0, 0,345, 0.479, 1,150

08
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Interior

BOGDY SURFRCE Point
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Point

-1

SURFRCE NOGRMAL VECTOR
UNIT VECTOR TANGENT T0 ¥ COGRDINATE LINE
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FIGURE 10 COORDINARTE SYSTEM FOR WALL STATIC
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Second Derivative of Blade Surface Position
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FIGURE 11  TYPICAL BLADE SECTION GEGMETRY AND CALCULATED

SECGND DERIVATIVE OF BLRDE SURFACE POSITION
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GRID Numbering
Description
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MESH3D

Axisymmetric
Geometric
Information

|

X-R Grid

Biade Row
Geometry

>

Permanent
File

Blade >

Permanent
File
GEOM
Axisymmefric)
\ Geometry

FIGURE 17

TGEOM ™

GRID Positions
and Stretching
Derivatives
CALT - Biade Smoothness
Information
Blade Normal
BLOT Vectors and
Curvatures
Hub and Tip Casing
BUILD Slopes and
| Curvatures
SVGRID
END

FLOHCHART FOR PROGRAM MESH3D
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Data
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(Starting)
Solution
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New )
Solution

FIGURE 18
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FLOWCHART FOR PROGRAM BLADE3D
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Data
START -
» BLOCKX
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CLOSE BLOCKR
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FIGURE 23 BLRDE GEOMETRY INPUT TRBLE OEFINITIOGNS



S0 AXTAL COMPRESSOR GRID CONE.,

~NABA LOW ASPFECT RATIO GRIN

~THE WUMBER 0OF RLANES 18§ o

~HALF MESGH SFACTRG CUNSTANT ¥5 0.
~GRI) FOINTS
=Id THETS BIRECTYIOM - 1 TN R
LEADING RDGE AN
~RUTTS POINT

=THE RLADF

~THE FL1RST

=DERUG DUMF
~SUBROUTINE

FUTRT ON THE DAMFER
=THE LAST POINT O THE OAMPER I3
~0UTRUT FILE

IR X NIRECTION

I5 AP BRI LIME

NUMEER 1% -4
FAKANETER 15 O
GR1D FINLSHED, (ERs

~EXTRAFPOLATLON HEERLED FOR Jsl
SEXTRAPOLATION HESDER FOR Jql
—EXTRAFOLATLION WNEEDED FOR J¥l
~EXTRAPOLATION HEELDED FOR Js2L
~EXTRAFOLATION WEEDED FOR Jsl
~EXTRAFDLATIOH HEEDBEUW FOR JsL

~GUBRUUT IRF
~SURROUTINE
~SUBROUT LNF
~SUBKUUT INE
-570F

CALT FINISHEDR., TER::
BLUT FIWNISHED
RUSTLD FINTSHED
SVGRIN FINLISHED

FIGURE 24

TEST

500
30
GIRECTION = 10

TRAELLING EUGE ARE AT AXLAL GRID LIHES
20
s

0

)

0
1€
11
12
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14

U

Q

MESH3D RUN LOG FILE
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20

901



HUB AND TIP COORDINATE INPUT CHECK

HUE> YIF2 L.E+7 AMN

SCALED RAW NaTH
~1.37%08
-0 ,052017
=-0.32230
—0,124%5%2
=0, 01/81

D 07364
O, 172865
O.271L64
O, 7G63
0. 36942
0.546861
O.5/34%
Ved1386
G546
GLb5161
1,15928

alsllED
~4.1283%2
-1.17931
e GEO2Y
Qe BRL237
-0,13435
~0,01781
0073487
Q. 17748
GeR271E7
GeA7070
Oea86771
O 0b6872
Q.57380
O0.61378
06027
D.aT1L7S
110901

FIGURE 25

kRalW DATA INFUT

107

VB

THPUT
0, 30002
0+ 35062
G.+35052
0,34497
0.35438
0,37192
0.4574%0
GeR2763
0.48672
0.446385
0. 472409
0.48474
0.18474
0.48474
048474
O+ 8474
0.43474

s
1.00G00
1,00000
1.00000
1.00000
1,00000
0.99988
D.794673
0,97950
0.76207
C.9L3446
0.73049
0,935049
0,73049
0.90049
0.75304%
0.95049
D+7u0472

¥

CODRUBLHATES.

XYW FAIRS

FAITRS

MESH3D BULK OUTPUT FILE



HUB AND TIP COORDINARTE SMOOTHNESS CHECK

HUEBs T1Fs LoE.s ARD T.E. DERIVITIVES.

-
= O ONDOU D=

12
13
14
15
16
17

X
-3.,1283
-1,3179%
-0,45203
-0, 33224
-0.+1243
-0,0)78

0.0737
01727
0.2717
0,3707
0.46%7
0:7687
0.5748
0.6138
0.4528
04917
1,1595

FIGURE 26

Y
1,0000
1,0000
1,0000
1,0000
1,0000
0,9999
0.9967
0,979%
0.9621
0. 9535
0.9505
049505
0.9505
0. 9%50%
0.950%5
09505
0.9505

MESH3D

urnXx
0.0000
0.0000
-0.,0001
0.0003
~0.0009
“0.0006
-0.1033
-0 2033
-0.1334
~0.0520
-0,0095
0.0003
-0.,0001
0.0000
0.0000
0. 0000
0.0000

nD2YDX
0.0000
0.0001
=0.0005
0.0041
=0.,0159
0.0215
~2.2608
0.2448
141673
0.4784
0.3784
-0.+1786
00,0136
~0.,0036
0.0009
0.0000
0.0000

BULK OUTPUT FILE

80T



R-Z COORDINATES IN PHYSICAL SPACE

X~R GRIB COORDINATES AND METRICS.
THE AXIAL FACKING FACTQR I8 0,100

KaliAl, AXIAL
811110 FOSITION

Ralilal
FUSTTION

XX

RX

1 3 -0, A%64 0.3094 3,504 1.33% 0,033
1 2 ~0.,4876 0, 3504 FARY 1,058 0089
1 3 -0.4837 G.a717 3.463% 1.338 G026
1 4 =0+4774 0.00529 d.216 1.538 0.022
1 g -0, %6%0 0,634 beBhd 1.+537 h.018
1 & =~ AUy G713 3.292 1,537 0.014
1 7 RURE NV Os77558 L0034 1.036 0.010
1 8 =0.44565 Ue8/7Y 41869 svidé 0.006
1 ? =0, 3401 G5.9574 3,138 1.5354 0,002
1 10 -Q.A278 1,407 J.04a] 1,235 =0.002

FIGURE 27

HESH3D BULK OQUTPUT FILE

60T



110
SCALED BLADE ROW GEOMERTY

NASA LOW ASPFECT RATIO THO-STAGE -- NEW ROTOR OHE GEOMETRY -- 8/28/78

INFUT DATA FOR SECTION 1
L J X R RTHFS RTHSS
1 i 0.00000 0.40147/ 0.00160 -0.,00160
1 2 0.00127 0.%01%6 0.0007% -0.00315
1 3 0.01699 0.3%701 -0.009%94 -0.02000
1 4 0,03271 0.3274%  -0.01973 -0.03438
1 ] 0.0484% 0.,39634 -0,02836 -0.04727
1 & 0.06425 0.375%63% -0.03603 -0.03870
1 7 0.07%88 0.3951% -0.04301 -0.06863
1 ] 0.07360 G,3%7496 -0.0493%31 -0.07719
1 k4 Os11132 0.39487 -0.00500 -0.08454
1 14 Ge1E704 0,39188 -0.04003 -0.09073
1 11 0.14276 0.394%4 -0.06442 -0.09583
1 L3 0,105848 0395305 ~06.06813% -0.,09984
1 13 017420 0.39516 =-0,0711% -0.10279
1 14 0.18993 0,37324  -0.07343 -0.10468
1 15 0.20563 0.39529 -0,07495 -0,10544
1 14 0.2d147 0.39530 -0.07566 -0.103512
1 17 0.23709 0.39526 -0.070550 -0.10355
1 18 0.25628) 0.390518 -0.07442 -0.100469
1 19 0.,26854 0.395046 -0,07233 -0.09641
1 20 G. 28426 0.+39494 -0.06vY12 -0.,090357
1 21 0.29998 0.39487 -0.0644% -0.08293
1 22 0,31570 0.39491 -0.0U834 -0.07315
1 23 0.33142 0.39518 -0.,00U130 ~0.06085
1 24 0,34714 0..49589 -0.04230 -0.04448
1 25 0.3480%5 0.3495%5 -0,04179 -0.04331

SECONU NERIVATIVE CHECLRK FOR FRESSURE SURFACE

J X Y Yo n2vpXx
1 9.,0000 0.0016 -0,67232 -1.7001
2 0.0013 0.0008 ~0.6704 -3.4001
3 0,03170 -0,00%% ~0.6619 5.1238
4 0.03x7 =0.0197 ~0.,384%5 47202
] 0,0484 -0.0284 =0.u5159 44,0563
é 0.0542 =0.0460 ~0.44644 2.4397
7 00,0799 -0.,0430 =0.422% 2.9042
8 0.0958 -0.,0493 -0.3810 2434609
9 0:1113 =0.05%50 -0.45%12 2.7080
10 0.1270 -0.0600 =0 2998 2,5585
11 0.2428 0,064 =0,2379 247705
12 0.1585 -0.0681 -0.2141 2:.7992
13 0,1742 -0,0711 =0.14687 2+9773
14 00,1899 -0.0734 =0.1212 3.0727
S5 G2006 -0.,0749 =0.0714 3.2260
16 0.2214 ~0.0757 -0.0182 345723
17 02373 =0.075% 0.0388 3.6729
is 0.2528 -0.0744 0.09964 A4.0731
iy 0.268% ~0.0723% 0+14674 4.5474
20 0.2843 -0,06%1 0.2414 4.8666
21 Q+3000 =0,0647 0.32752 5.7928
22 0+3157 -0.0588 0.4195 642089

FICURE 28 MESH3D BULK OUTPUT FILE



CALCULATED BLADE NORMAL

NORMAL VECTORS ARD RADTI UF CURVATURE

L COSMR ©O8MYT (O0sSHZ RES RTAU

FRESSURE STUE NORKMAL VECTOR
1 -0,099 0.841 0,532 0.000 0.000
4 -0,148 0,765 0,427 0.000 0,074
7 =0,070 0,573 0.817 0,000 0,299
10 =0,073  0.435 0.897 0.000 0.000
FIGURE 28 MESH3D

VECTORS AND CURVARTURES

CALCULATED HUB RAND TIP CRSING SPLOE
CALCULATED TRANSFORM JARCOBIAN VALUES

HUB SLOPE HUR CURV,
-0,02018 0.,04881
JACUBIANS FOR RaADLIAL GRID P OCATIORS,
L i9.22562 2 18.85500 3
7 17,41033 & 17.15993% 9

FIGURE 30

TR SLOFE
-0.00004

1868772 A
14.88091 10

0.001351

ig.a1212 5
16,34608

18.09502

MESH3D BULK OUTPUT FILE

&

CFOR AX1Ak STATION i, 1o
L. ClOsik  COSMT  COSMZ REs RTAU
2 ~0.073 0,823 0543 (0,000 -0.198
no=0,147 0,678 0.721 0.000 0.830
B ~0.080 0,532 0,845 0,000 0.6E8
BULK OQUTPUT FILE
TiF CURV, FOR AXIAL STATION KO,

17.72968

111



112

INVISCID 3-In AXIAL COMPRESS0OR ANALYSIS COLDE.
MaSa LOW ASFECT RATIO ROTOR TEST -

THE NUMBER DOF BLADES 15 22
50 CYCLES ARE TO BE RUN WITH DT = 0.00200

DFERATOR SEQUENCE 1S
OFERATORDT MULTIFLERsREFEAT COUNT

Toar 1 8
X OOF 1 g
fr op 8 i
RoGF 8 1
LAY i 8
T aF 1 8
GRID FPOINTE IN X DIRECTION IS 60
GRID FOIRTS IN THETA DIRECTION IS i7
GRID FOINTS IN R DIRECTION IS ig
THE BLADE LEADING AND TRAILING EDGES ARE AT AXIAL STATIONS 23 AND 43
THE KUTTA FOINT IS LOCATED AT AXIAL STATION 45
FIRGT UaMFER STATIOGN IS AT 0
THE LAST DAMFER STATION IS AT Q

inLow 18 1

IDHIGH IS 18

SGaMia IS 1.400

ELARE SPEED (WRT/A0) IS 1.271

SRTIFICAL YISCOEITY FARAMETER IS5 0.400
DOWNSTREAM FRESSURE I8 TO EBE SET TO 0.78¢
UPSTREAM MACH NUMBER FARAMETER IS5 0.310

. RADIUS UTHET#A TTIN FTIN OR JFLUS
1 0.321%4 0.00000 1+.00000 5.32000
P 037240 0.,00000 1.00000 35432000
3 0.4128¢ 0.00000 1.00000 3+32000
& 0.453334 G.00000 1.,00000 9.32000
O 0.49383 0,00000 1.006000 5.32000
& 0.53432 0.00000 1.00000 5.32000
7 ¢.%57480 0.00000 1.00000 59,32000
] 0.,61528 2,0G000 1.00000 9.32000
4 0.8635576 0.,00000 1.00000 5.32000
14 G, 69625 0.00000 1.00000 %.32000
11 0,.73674 000000 1.60000 5.32000
12 CF772E 0,00000 1.060000 5.32000
13 0.81773 0.00600 1.,00000 S.32000
14 0,83823 0000600 1.00000 D.32000
13 O.B9874 0.00000 1.060000 G+32000
L& 0.939%4 2.00000 1,00000 D9+.32000
17 G.F7975 0000060 1.00000 5.32000
i 1.02024 G 00000 1.06000 D 32000

FIGURE 31 BLRDE3D RUN LBG FILE



GRID OQUTFUT FOR

30 9 1 2
FT 0.944 0,940
MR 0.102 o6.102
MTH 0+35%5 0.357
MX 0.521 0,823
TT 1.116 1.109

THETA AVERAGE FROPERTIES.
ZHFAN FT MR
0.227 0,898 0.119

FIGURE 32

30 TO
NAGA LOW ABFECT RATIO ROTOR

30 IN ARS
TEST

3
0.937
0,103
0.351
0.533
1,103

MTH
0.294

SYSTEM
4 5
0,934 0,933
0,105 0,106
0. 34T 0,337
0.547 0.561
1,097  1.091

MX TT
0,603 1,074

BLADE3D BULK OUTPUT FILE

SOLUTION MATRIX FOR

&
0929
0.108
0327
D E74
1.08%5

AXIAL GRID PLANE 30

RADIAL GRID PLANE
NON-DIMENS1ONAL FLOW VRRIABLES AT
TANGENTAL POINTS 1 TG 10

c

~

;
0L FRs
G.112
0316
04589
1.081

8
0.971%
O+.115
0,305
0.602

.
1.078

9
0,912
0v117
6,294
0,414
1,075

10
0,904
0,119
0,282
0,425

1.072

£TT



L. RADIUS

16 0.718
1l QeEs
12 0.791
13 0.827
14 0.B&3
1% 0.899
16 0.935
17 0.970
15 1.005

FIGURE 33

M&TH

MERID
0,536
0.544
0.577
G.o999
0.56135
0.625
f;) 56‘30
0.635
Q.647
0.660
D.8645
0654
B, 659
0.852
0. 4640
0.627
0,597
0.987

NUMBERSD

TANGEN
034
0.31

Q.20
0,17
D.14
011
G.0%
0.08
0.07
0.06
0,06
0.04

TOTAL
0,604
O.H24
D.HE3
D.671
O.4682
0.6850
0,683
0.4678
0.478
0.681
D.,679
0.673
0,686
G.AH57
0,643
0.62%
0,600

0.5%92

114

P UON
FREF
1,257
1.19%9
1,223
1.241
1.25%
1e273
1,280
1.269
1.24%
1,219
1,185
1.157
1.134
1.114
1,098
1.078
1.161
1.066

T ON
TREF
1,402
1.06C
1,062
1,049
1,074
1,077
1.077
1.0G73
1.045
1,057
1,049
1.042
1,035
1.030
1.027
1.025
1.024
1.034

BLADE3D BULK OUTPUT FILE
THETA AYERAGED FLOW QUANTITES

AXIAL GRID PLANE 30

AMGLES

WHIRL
1.7

29, 4

P
26 .5
2545
24,2
bl

RERID
18.1
146.8
14,3
12.4
11.1
10.1

24
8.5
7.0
4,8

2.8



- AXIAL GRID FLANE

- 1,08E+01 3. 05E+01 L OREHOL

= 1,00E+00 2,07E+01 2 OBEH01 64 00F+01
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FIGURE 34 BLADE3D BULK GUTPUT FILE
MRASS FLOW RATE VS. AXIAL GRID PLANE
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ITERGTION
?.17E+00 205401 4,18E+01
1,00E+00 1.73E+01 337EAO] 9.00E+01
D.{...-......-......._.-..---..{.........--............--.JI........-......__-.._...--.. e e ot i wme e nn e men e e o e e e e e e e e e o

1.1305 +4 t +

¥ i 4

R
)
1
1

- l... -
S 11,0791 +4 \ _
. N - -

=
ol
N
=
-
-+
-l

-5 -

. -k R R R R
- E - R R K RE R R -

- D I R RRRRR R

- 61,0277 ++ 3 tR R R RRt R R R+ + 4
. - Rk RKR KR RRER -
- - R RR RR RRR R -
- F - R (-

. F\' -

E - .
50,9763 ++ ¥ + 4 * + T

-85 -

U -
R - -
E a —

0.9249 ++ + + oo + + T+
T T S e et 11
1,00E+00 1,73E+01 3.37E401 5,00E+01
¢ 17E400 2LESEL01 4,1BE+01
ITERATION

FIGURE 35 BLADE3D BULK OUTPUT FILE
TRAILING EDGE STRTIC PRESSURE
vS. ITERATIGN NUMBER

911



AELal, GRIND PLARE
- 1, 00K+01 3.00E401 BL0WE+0L
1, O0E+O0 2 07F+00 4,03E+0) 5+0UF+GL

- LYR507 ++ + + + + 5 + ++

- FE 55 -

- FR -
- . F' 5 -
-5.,085198 ++ + ++
~-T - FF 5 -

4-.
-+
-

-
i
+

-1 -~ i 5 -

-C - F F 5 -
o) -

- - r <2 -

~R ~X

[Pa)
i

~E L WATEO A OO RN KRR RVR v + & + + ++
- - 5405 -
- - 3 G -
- - 3 -
- - 5 5 -

VARET 44 ¥ ¥ & 4 ¥ ¥ ++
e + :
- 1, 00E+00 2L07E+0L 3,03E401 6. 00E+UL
- L O8E+01 AL OUE+OL G ORETO
GATAL GRLN FLANE

FIGURE 36 BLADE3D BULK QUTPUT FILE
STATIC PRESSURE ON RADIAL GRID PLANE S
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NIV e
1s

STATIL FRESSURE BY
L 9

Fuk 51 S5URFACE

AT
1.73E-01

S.A0E-02

-4, 72E-03 1.1AE~01
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